These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 3493268)
21. Relationships between segregated afferents and postsynaptic neurones in the optic tectum of three-eyed frogs. Katz LC; Constantine-Paton M J Neurosci; 1988 Sep; 8(9):3160-80. PubMed ID: 3262721 [TBL] [Abstract][Full Text] [Related]
22. Fine-structural alterations and clustering of developing synapses after chronic treatments with low levels of NMDA. Yen LH; Sibley JT; Constantine-Paton M J Neurosci; 1993 Nov; 13(11):4949-60. PubMed ID: 8229207 [TBL] [Abstract][Full Text] [Related]
23. NMDA receptor agonist and antagonists alter retinal ganglion cell arbor structure in the developing frog retinotectal projection. Cline HT; Constantine-Paton M J Neurosci; 1990 Apr; 10(4):1197-216. PubMed ID: 2158526 [TBL] [Abstract][Full Text] [Related]
24. A banded distribution of retinal afferents within layer 9A of the normal frog optic tectum. Law MI; Constantine-Paton M Brain Res; 1982 Sep; 247(2):201-8. PubMed ID: 7127123 [TBL] [Abstract][Full Text] [Related]
25. Eye-specific termination bands in tecta of three-eyed frogs. Constantine-Paton M; Law MI Science; 1978 Nov; 202(4368):639-41. PubMed ID: 309179 [TBL] [Abstract][Full Text] [Related]
26. Functional morphology of frog retinal ganglion cells and their central projections: the dimming detectors. Stirling RV; Merrill EG J Comp Neurol; 1987 Apr; 258(4):477-95. PubMed ID: 3495556 [TBL] [Abstract][Full Text] [Related]
27. Normal activity-dependent refinement in a compressed retinotectal projection in goldfish. Olson MD; Meyer RL J Comp Neurol; 1994 Sep; 347(4):481-94. PubMed ID: 7529264 [TBL] [Abstract][Full Text] [Related]
28. Location of retinal ganglion cells contributing to the early imprecision in the retinotopic order of the developing projection to the superior colliculus of the wallaby (Macropus eugenii). Marotte LR J Comp Neurol; 1993 May; 331(1):1-13. PubMed ID: 7686568 [TBL] [Abstract][Full Text] [Related]
29. Relationship between isthmotectal fibers and other tectopetal systems in the leopard frog. Gruberg ER; Wallace MT; Waldeck RF J Comp Neurol; 1989 Oct; 288(1):39-50. PubMed ID: 2794136 [TBL] [Abstract][Full Text] [Related]
30. A comparison of the normal and regenerated retinotectal pathways of goldfish. Stuermer CA; Easter SS J Comp Neurol; 1984 Feb; 223(1):57-76. PubMed ID: 6200514 [TBL] [Abstract][Full Text] [Related]
31. Effect of different optic nerve lesions on retinal ganglion cell death in the frog Rana pipiens. Humphrey MF J Comp Neurol; 1987 Dec; 266(2):209-19. PubMed ID: 3501791 [TBL] [Abstract][Full Text] [Related]
32. Compensation for population size mismatches in the hamster retinotectal system: alterations in the organization of retinal projections. Pallas SL; Finlay BL Vis Neurosci; 1991 Mar; 6(3):271-81. PubMed ID: 2054328 [TBL] [Abstract][Full Text] [Related]
33. Optic tectum in congenitally monophthalmic fishes and chicks. Pritz-Hohmeier S; Hanisch S; Malz CR; Michel H; Meyer DL; Reichenbach A J Hirnforsch; 1993; 34(3):407-15. PubMed ID: 8270791 [TBL] [Abstract][Full Text] [Related]
34. Nicotine exposure refines visual map topography through an NMDA receptor-mediated pathway. Yan X; Zhao B; Butt CM; Debski EA Eur J Neurosci; 2006 Dec; 24(11):3026-42. PubMed ID: 17156364 [TBL] [Abstract][Full Text] [Related]
35. Changes in retinal arbors in compressed projections to half tecta in goldfish. Schmidt J; Coen T J Neurobiol; 1995 Dec; 28(4):409-18. PubMed ID: 8592102 [TBL] [Abstract][Full Text] [Related]
36. Role of target tissue in regulating the development of retinal ganglion cells in the albino rat: effects of kainate lesions in the superior colliculus. Carpenter P; Sefton AJ; Dreher B; Lim WL J Comp Neurol; 1986 Sep; 251(2):240-59. PubMed ID: 3782500 [TBL] [Abstract][Full Text] [Related]
37. Topography of regenerating optic fibers in goldfish traced with local wheat germ injections into retina: evidence for discontinuous microtopography in the retinotectal projection. Meyer RL; Sakurai K; Schauwecker E J Comp Neurol; 1985 Sep; 239(1):27-43. PubMed ID: 4044930 [TBL] [Abstract][Full Text] [Related]
38. Target regulation of synaptic number in the compressed retinotectal projection of goldfish. Murray M; Sharma S; Edwards MA J Comp Neurol; 1982 Aug; 209(4):374-85. PubMed ID: 7130464 [TBL] [Abstract][Full Text] [Related]
39. Serotonergic reticular formation cells in Rana pipiens: categorization, development, and tectal projections. Zhao B; Debski EA J Comp Neurol; 2005 Jul; 487(4):441-56. PubMed ID: 15906310 [TBL] [Abstract][Full Text] [Related]
40. Nitric oxide in the retinotectal system: a signal but not a retrograde messenger during map refinement and segregation. RenterĂa RC; Constantine-Paton M J Neurosci; 1999 Aug; 19(16):7066-76. PubMed ID: 10436061 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]