BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 34933034)

  • 1. Determination of photoautotrophic growth and inhibition kinetics by the Monod and the Aiba models and bioenergetics of local microalgae strain.
    Tunay D; Yildirim O; Ozkaya B; Demir A
    Chemosphere; 2022 Apr; 292():133330. PubMed ID: 34933034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into the comprehensive effect of carbon dioxide, light intensity and glucose on heterotrophic-assisted phototrophic microalgae biofilm growth: A multifactorial kinetic model.
    Ye Y; Ma S; Peng H; Huang Y; Zeng W; Xia A; Zhu X; Liao Q
    J Environ Manage; 2023 Jan; 325(Pt B):116582. PubMed ID: 36308961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic kinetic model of photoautotrophic microalgae based on chlorophyll fluorescence analysis.
    Xiong J; Yu L; Zhang Z; Wang Y; Wang W; Yang H; Yan R; Zhu D
    Math Biosci; 2019 Sep; 315():108234. PubMed ID: 31330136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon.
    Chang HX; Huang Y; Fu Q; Liao Q; Zhu X
    Bioresour Technol; 2016 Apr; 206():231-238. PubMed ID: 26866758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.
    McGinn PJ; Dickinson KE; Bhatti S; Frigon JC; Guiot SR; O'Leary SJ
    Photosynth Res; 2011 Sep; 109(1-3):231-47. PubMed ID: 21461850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mathematical model of intracellular behavior of microalgae for predicting growth and intracellular components syntheses under nutrient-replete and -deplete conditions.
    Ryu KH; Sung MG; Kim B; Heo S; Chang YK; Lee JH
    Biotechnol Bioeng; 2018 Oct; 115(10):2441-2455. PubMed ID: 29896761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions.
    Gim GH; Ryu J; Kim MJ; Kim PI; Kim SW
    J Ind Microbiol Biotechnol; 2016 May; 43(5):605-16. PubMed ID: 26856592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity.
    Ye Y; Huang Y; Xia A; Fu Q; Liao Q; Zeng W; Zheng Y; Zhu X
    Bioresour Technol; 2018 Dec; 270():80-87. PubMed ID: 30212777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions.
    Adesanya VO; Davey MP; Scott SA; Smith AG
    Bioresour Technol; 2014 Apr; 157():293-304. PubMed ID: 24576922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production.
    Ren HY; Liu BF; Ma C; Zhao L; Ren NQ
    Biotechnol Biofuels; 2013 Oct; 6(1):143. PubMed ID: 24093331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life cycle greenhouse gas emissions of microalgal fuel from thin-layer cascades.
    Portner BW; Endres CH; Brück T; Garbe D
    Bioprocess Biosyst Eng; 2021 Nov; 44(11):2399-2406. PubMed ID: 34296327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Models of microalgal cultivation for added-value products - A review.
    Bekirogullari M; Figueroa-Torres GM; Pittman JK; Theodoropoulos C
    Biotechnol Adv; 2020 Nov; 44():107609. PubMed ID: 32781245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Different Cultivation Modes (Photoautotrophic, Mixotrophic, and Heterotrophic) on the Growth of
    Yun HS; Kim YS; Yoon HS
    Front Bioeng Biotechnol; 2021; 9():774143. PubMed ID: 34976972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A promising approach to enhance microalgae productivity by exogenous supply of vitamins.
    Tandon P; Jin Q; Huang L
    Microb Cell Fact; 2017 Nov; 16(1):219. PubMed ID: 29183381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive review on carbon source effect of microalgae lipid accumulation for biofuel production.
    Ma X; Mi Y; Zhao C; Wei Q
    Sci Total Environ; 2022 Feb; 806(Pt 3):151387. PubMed ID: 34740661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A parametric logistic equation with light flux and medium concentration for cultivation planning of microalgae.
    Kambe K; Hirokawa Y; Koshi A; Hori Y
    J R Soc Interface; 2022 Jun; 19(191):20220166. PubMed ID: 35702861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Optimization Approach to Estimate Kinetic Parameters of Monod-Based Microalgae Growth Models.
    Jamaian SS; Zulkifli FH; Ling KS
    Methods Mol Biol; 2022; 2385():117-140. PubMed ID: 34888718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress in physicochemical parameters of microalgae cultivation for biofuel production.
    Hossain N; Mahlia TMI
    Crit Rev Biotechnol; 2019 Sep; 39(6):835-859. PubMed ID: 31185749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle evaluation of microalgae biofuels production: Effect of cultivation system on energy, carbon emission and cost balance analysis.
    Dasan YK; Lam MK; Yusup S; Lim JW; Lee KT
    Sci Total Environ; 2019 Oct; 688():112-128. PubMed ID: 31229809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model based analysis of carbon fluxes within microalgae-bacteria flocs using respirometric-titrimetric data.
    Manhaeghe D; Allosserie A; Rousseau DPL; Van Hulle SWH
    Sci Total Environ; 2021 Aug; 784():147048. PubMed ID: 33894600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.