BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 34933133)

  • 1. TMT based proteomic profiling of Sophora alopecuroides leaves reveal flavonoid biosynthesis processes in response to salt stress.
    Ma TL; Li WJ; Hong YS; Zhou YM; Tian L; Zhang XG; Liu FL; Liu P
    J Proteomics; 2022 Feb; 253():104457. PubMed ID: 34933133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo transcriptome sequencing and analysis of salt-, alkali-, and drought-responsive genes in Sophora alopecuroides.
    Yan F; Zhu Y; Zhao Y; Wang Y; Li J; Wang Q; Liu Y
    BMC Genomics; 2020 Jun; 21(1):423. PubMed ID: 32576152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Phytohormone Signal Transduction in
    Zhu Y; Wang Q; Gao Z; Wang Y; Liu Y; Ma Z; Chen Y; Zhang Y; Yan F; Li J
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined Transcriptomic and Metabolomic Analysis Reveals the Role of Phenylpropanoid Biosynthesis Pathway in the Salt Tolerance Process of
    Zhu Y; Wang Q; Wang Y; Xu Y; Li J; Zhao S; Wang D; Ma Z; Yan F; Liu Y
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33673678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening and identification of salt-tolerance genes in Sophora alopecuroides and functional verification of SaAQP.
    Zhu Y; Wang Q; Guo W; Gao Z; Wang Y; Xu Y; Liu Y; Ma Z; Yan F; Li J
    Planta; 2021 Sep; 254(4):77. PubMed ID: 34535825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and Proteomic Analysis of Seed Germination under Salt Stress in Mulberry.
    Wang Y; Jiang W; Cheng J; Guo W; Li Y; Li C
    Front Biosci (Landmark Ed); 2023 Mar; 28(3):49. PubMed ID: 37005750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-Wide Identification of
    Zhu Y; Wang Y; Ma Z; Wang D; Yan F; Liu Y; Li J; Yang X; Gao Z; Liu X; Wang L; Wang Q
    Int J Mol Sci; 2024 Jun; 25(11):. PubMed ID: 38892361
    [No Abstract]   [Full Text] [Related]  

  • 8. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.
    Zhu Z; Chen J; Zheng HL
    Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iTRAQ protein profile analysis of sugar beet under salt stress: different coping mechanisms in leaves and roots.
    Li J; Cui J; Cheng D; Dai C; Liu T; Wang C; Luo C
    BMC Plant Biol; 2020 Jul; 20(1):347. PubMed ID: 32698773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative proteomic and metabolomic analyses reveal stress responses of hemp to salinity.
    Yang Y; Cheng Y; Lu Z; Ye H; Du G; Li Z
    Plant Cell Rep; 2024 May; 43(6):154. PubMed ID: 38809335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype.
    Wang N; Zhao J; He X; Sun H; Zhang G; Wu F
    BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Community ecological succession of endophytic fungi associates with medicinal compound accumulation in
    Ju M; Zhang Q; Wang R; Yan S; Zhang Q; Li P; Hao F; Gu P
    Microbiol Spectr; 2024 Feb; 12(2):e0307623. PubMed ID: 38236025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance.
    Chen F; Fang P; Peng Y; Zeng W; Zhao X; Ding Y; Zhuang Z; Gao Q; Ren B
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31554168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How salt stress-responsive proteins regulate plant adaptation to saline conditions.
    Mansour MMF; Hassan FAS
    Plant Mol Biol; 2022 Feb; 108(3):175-224. PubMed ID: 34964081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic Approaches to Uncover Salt Stress Response Mechanisms in Crops.
    Kausar R; Komatsu S
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated physiological, metabolite and proteomic analysis reveal the glyphosate stress response mechanism in tea plant (Camellia sinensis).
    Liu S; Rao J; Zhu J; Li G; Li F; Zhang H; Tao L; Zhou Q; Tao Y; Zhang Y; Huang K; Wei C
    J Hazard Mater; 2023 Jul; 454():131419. PubMed ID: 37099910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated physiological, transcriptomics and metabolomics analysis revealed the molecular mechanism of Bupleurum chinense seedlings to drought stress.
    Feng X; Sun Y; Fan Y; Zhang Q; Bu X; Gao D
    PLoS One; 2024; 19(6):e0304503. PubMed ID: 38843246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iTRAQ-based quantitative proteomic analysis provides insight into the drought-stress response in maize seedlings.
    Ren W; Shi Z; Zhou M; Zhao B; Li H; Wang J; Liu Y; Zhao J
    Sci Rep; 2022 Jun; 12(1):9520. PubMed ID: 35681021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of salt stress and recovery in leaves of Vigna unguiculata cultivars differing in salt tolerance.
    de Abreu CE; Araújo Gdos S; Monteiro-Moreira AC; Costa JH; Leite Hde B; Moreno FB; Prisco JT; Gomes-Filho E
    Plant Cell Rep; 2014 Aug; 33(8):1289-306. PubMed ID: 24770441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome revealed the molecular mechanism of Glycyrrhiza inflata root to maintain growth and development, absorb and distribute ions under salt stress.
    Xu Y; Lu JH; Zhang JD; Liu DK; Wang Y; Niu QD; Huang DD
    BMC Plant Biol; 2021 Dec; 21(1):599. PubMed ID: 34915868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.