These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34933156)

  • 1. Design and properties of graded polyamide12/hydroxyapatite scaffolds based on primitive lattices using selective laser sintering.
    Zhao Z; Li J; Wei Y; Yu T
    J Mech Behav Biomed Mater; 2022 Feb; 126():105052. PubMed ID: 34933156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of PA12/HA composite scaffolds based on selective laser sintering.
    Yao D; Zhao Z; Wu Z; Li M; Li J
    J Mech Behav Biomed Mater; 2023 Sep; 145():106000. PubMed ID: 37423007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of graded scaffolds developed by curve interference coupled with selective laser sintering.
    Li J; Zhao Z; Yan R; Yang Y
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111181. PubMed ID: 32806271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering.
    Eshraghi S; Das S
    Acta Biomater; 2012 Aug; 8(8):3138-43. PubMed ID: 22522129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical and permeability properties of porous scaffolds developed by a Voronoi tessellation for bone tissue engineering.
    Zhao Z; Li J; Yao D; Wei Y
    J Mater Chem B; 2022 Nov; 10(46):9699-9712. PubMed ID: 36398681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of the configuration of porous bone scaffolds made of Polyamide/Hydroxyapatite composites using Selective Laser Sintering for tissue engineering applications.
    Ramu M; Ananthasubramanian M; Kumaresan T; Gandhinathan R; Jothi S
    Biomed Mater Eng; 2018; 29(6):739-755. PubMed ID: 30282331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Design of new gradient scaffolds based on triply periodic minimal surfaces and study on its mechanical, permeability and tissue differentiation characteristics].
    Liu Z; Gong H; Gao J; Liu Z; Zou S; Tian S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Oct; 38(5):960-968. PubMed ID: 34713664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties and failure mechanisms of polyamide 12 gradient scaffolds developed with selective laser sintering.
    Zhao Z; Wu Z; Yao D; Wei Y; Li J
    J Mech Behav Biomed Mater; 2023 Jul; 143():105915. PubMed ID: 37257310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Properties Directionality and Permeability of Fused Triply Periodic Minimal Surface Porous Scaffolds Fabricated by Selective Laser Melting.
    Ye J; He W; Wei T; Sun C; Zeng S
    ACS Biomater Sci Eng; 2023 Aug; 9(8):5084-5096. PubMed ID: 37489944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility.
    Du Y; Liu H; Shuang J; Wang J; Ma J; Zhang S
    Colloids Surf B Biointerfaces; 2015 Nov; 135():81-89. PubMed ID: 26241919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-parameter design of triply periodic minimal surface scaffolds: from geometry optimization to biomechanical simulation.
    Yang X; Sun Z; Hu Y; Mi C
    Biomed Mater; 2024 Jul; 19(5):. PubMed ID: 38917813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design procedure for triply periodic minimal surface based biomimetic scaffolds.
    Günther F; Wagner M; Pilz S; Gebert A; Zimmermann M
    J Mech Behav Biomed Mater; 2022 Feb; 126():104871. PubMed ID: 34654652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inner strut morphology is the key parameter in producing highly porous and mechanically stable poly(ε-caprolactone) scaffolds via selective laser sintering.
    Tortorici M; Gayer C; Torchio A; Cho S; Schleifenbaum JH; Petersen A
    Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111986. PubMed ID: 33812614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial bone scaffolds of coral imitation prepared by selective laser sintering.
    Shi Y; Pan T; Zhu W; Yan C; Xia Z
    J Mech Behav Biomed Mater; 2020 Apr; 104():103664. PubMed ID: 32174422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique.
    Al-Munajjed AA; Plunkett NA; Gleeson JP; Weber T; Jungreuthmayer C; Levingstone T; Hammer J; O'Brien FJ
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):584-91. PubMed ID: 19180526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits.
    Du Y; Liu H; Yang Q; Wang S; Wang J; Ma J; Noh I; Mikos AG; Zhang S
    Biomaterials; 2017 Aug; 137():37-48. PubMed ID: 28528301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering.
    Wiria FE; Chua CK; Leong KF; Quah ZY; Chandrasekaran M; Lee MW
    J Mater Sci Mater Med; 2008 Mar; 19(3):989-96. PubMed ID: 17665112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering.
    Shi D; Shen J; Zhang Z; Shi C; Chen M; Gu Y; Liu Y
    J Biomed Mater Res A; 2019 Aug; 107(8):1615-1627. PubMed ID: 30920134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of sheet and network solid structures of similar TPMS scaffold architectures on permeability, wall shear stress, and velocity: A CFD analysis.
    Karaman D; Ghahramanzadeh Asl H
    Med Eng Phys; 2023 Aug; 118():104024. PubMed ID: 37536832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.