These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 34933549)
1. Determination of the Influence of Various Factors on the Character of Surface Functionalization of Copper(I) and Copper(II) Oxide Nanosensors with Phenylboronic Acid Derivatives. Proniewicz E; Starowicz M; Ozaki Y Langmuir; 2022 Jan; 38(1):557-568. PubMed ID: 34933549 [TBL] [Abstract][Full Text] [Related]
2. SERS/TERS Characterization of New Potential Therapeutics: The Influence of Positional Isomerism, Interface Type, Oxidation State of Copper, and Incubation Time on Adsorption on the Surface of Copper(I) and (II) Oxide Nanoparticles. Proniewicz E; Olszewski TK J Med Chem; 2022 Mar; 65(5):4387-4400. PubMed ID: 35230122 [TBL] [Abstract][Full Text] [Related]
3. Homogeneous Pt nanostructures surface functionalized with phenylboronic acid phosphonic acid derivatives as potential biochemical nanosensors and drugs: SERS and TERS studies. Proniewicz E; Gralec B; Ozaki Y J Biomed Mater Res B Appl Biomater; 2023 Jun; 111(6):1197-1206. PubMed ID: 36715221 [TBL] [Abstract][Full Text] [Related]
4. Metallic nanoparticles as effective sensors of bio-molecules. Proniewicz E Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 288():122207. PubMed ID: 36502763 [TBL] [Abstract][Full Text] [Related]
5. Ions-free electrochemically synthetized in aqueous media flake-like CuO nanostructures as SERS reproducible substrates for the detection of neurotransmitters. Proniewicz E; Tąta A; Starowicz M; Szkudlarek A; Pacek J; Molenda M; Kuśtrowski P Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 215():24-33. PubMed ID: 30825867 [TBL] [Abstract][Full Text] [Related]
6. Biological application of water-based electrochemically synthesized CuO leaf-like arrays: SERS response modulated by the positional isomerism and interface type. Proniewicz E; Vantasin S; Olszewski TK; Boduszek B; Ozaki Y Phys Chem Chem Phys; 2017 Dec; 19(47):31842-31855. PubMed ID: 29171610 [TBL] [Abstract][Full Text] [Related]
7. Effect of the Concentration and the Type of Dispersant on the Synthesis of Copper Oxide Nanoparticles and Their Potential Antimicrobial Applications. Guzman M; Arcos M; Dille J; Rousse C; Godet S; Malet L ACS Omega; 2021 Jul; 6(29):18576-18590. PubMed ID: 34337198 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and in situ oxidation of copper micro- and nanoparticles by arc discharge plasma in liquid. Zhakypov AS; Nemkayeva RR; Yerlanuly Y; Tulegenova MA; Kurbanov BY; Aitzhanov MB; Markhabayeva AA; Gabdullin MT Sci Rep; 2023 Sep; 13(1):15714. PubMed ID: 37735535 [TBL] [Abstract][Full Text] [Related]
9. Hydrothermal synthesis of copper (׀׀) oxide-nanoparticles with highly enhanced BTEX gas sensing performance using chemiresistive sensor. Gounder Thangamani J; Khadheer Pasha SK Chemosphere; 2021 Aug; 277():130237. PubMed ID: 34384171 [TBL] [Abstract][Full Text] [Related]
10. Calcination Strategy for Scalable Synthesis of Pithecellobium-Type Hierarchical Dual-Phase Nanostructured Cu Sahu KK; Raj B; Basu S; Mohapatra M ACS Omega; 2021 Jan; 6(2):1108-1118. PubMed ID: 33490770 [TBL] [Abstract][Full Text] [Related]
11. Green Synthesis, Characterization and Antimicrobial Activity of Copper Oxide Nanomaterial Derived from Qamar H; Rehman S; Chauhan DK; Tiwari AK; Upmanyu V Int J Nanomedicine; 2020; 15():2541-2553. PubMed ID: 32368039 [TBL] [Abstract][Full Text] [Related]
12. Low-temperature phyto-synthesis of copper oxide nanosheets: Its catalytic effect and application for colorimetric sensing. Kamali M; Samari F; Sedaghati F Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109744. PubMed ID: 31349425 [TBL] [Abstract][Full Text] [Related]
13. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Senanayake SD; Stacchiola D; Rodriguez JA Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528 [TBL] [Abstract][Full Text] [Related]
15. Surfactant-assisted synthesis of copper oxide nanorods for the enhanced photocatalytic degradation of Reactive Black 5 dye in wastewater. Rao MPC; Kulandaivelu K; Ponnusamy VK; Wu JJ; Sambandam A Environ Sci Pollut Res Int; 2020 May; 27(15):17438-17445. PubMed ID: 31119545 [TBL] [Abstract][Full Text] [Related]
16. Cubic Silver Nanoparticles Fixed on TiO Ambroziak R; Hołdyński M; Płociński T; Pisarek M; Kudelski A Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31623068 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Biosynthesis Synthesis of Copper Oxide Nanoparticles (CuO-NPs) for their Antifungal Activity Toxicity against Major Phyto-Pathogens of Apple Orchards. Ahmad H; Venugopal K; Bhat AH; Kavitha K; Ramanan A; Rajagopal K; Srinivasan R; Manikandan E Pharm Res; 2020 Nov; 37(12):246. PubMed ID: 33215292 [TBL] [Abstract][Full Text] [Related]
18. Surface-enhanced Raman scattering study of the redox adsorption of p-phenylenediamine on gold or copper surfaces. de Carvalho DF; da Fonseca BG; Barbosa IL; Landi SM; de Sena LÁ; Archanjo BS; Sant'Ana AC Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():108-13. PubMed ID: 23257336 [TBL] [Abstract][Full Text] [Related]
19. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy. Díaz-Visurraga J; Daza C; Pozo C; Becerra A; von Plessing C; García A Int J Nanomedicine; 2012; 7():3597-612. PubMed ID: 22848180 [TBL] [Abstract][Full Text] [Related]
20. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface. Ortega-Amaya R; Matsumoto Y; Espinoza-Rivas AM; Pérez-Guzmán MA; Ortega-López M Beilstein J Nanotechnol; 2016; 7():1010-7. PubMed ID: 27547618 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]