BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34934072)

  • 1. Direct foam writing in microgravity.
    Cordonier GJ; Sharafati C; Mays S; Thackery L; Gemmen E; Cyphert S; Brown M; Napolillo JQ; Toney S; Moore H; Kuhlman JM; Sierros KA
    NPJ Microgravity; 2021 Dec; 7(1):55. PubMed ID: 34934072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Writing of a Titania Foam in Microgravity for Photocatalytic Applications.
    Cordonier GJ; Anderson K; Butts R; O'Hara R; Garneau R; Wimer N; Kuhlman JM; Sierros KA
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):47745-47753. PubMed ID: 37767972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microgravity studies of aqueous wet foams.
    Langevin D; Vignes-Adler M
    Eur Phys J E Soft Matter; 2014 Mar; 37(3):16. PubMed ID: 24652241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deposition Offset of Printed Foam Strands in Direct Bubble Writing.
    Rastogi P; Venner CH; Visser CW
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of a water suction system using hydrophilic fibrous cloth under low gravity and microgravity in parabolic flight.
    Tani A; Saito T; Kitaya Y; Takahashi H; Goto E
    Seibutsu Kankyo Chosetsu; 2000 Jun; 38(2):89-97. PubMed ID: 12269372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. When is a surface foam-phobic or foam-philic?
    Teixeira MAC; Arscott S; Cox SJ; Teixeira PIC
    Soft Matter; 2018 Jul; 14(26):5369-5382. PubMed ID: 29869672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architected Polymer Foams via Direct Bubble Writing.
    Visser CW; Amato DN; Mueller J; Lewis JA
    Adv Mater; 2019 Nov; 31(46):e1904668. PubMed ID: 31535777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibody binding in altered gravity: implications for immunosorbent assay during space flight.
    Maule J; Fogel M; Steele A; Wainwright N; Pierson DL; McKay DS
    J Gravit Physiol; 2003 Dec; 10(2):47-55. PubMed ID: 15838989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of liquid metal foams through X-ray radioscopy and microgravity experiments.
    García-Moreno F; Tobin ST; Mukherjee M; Jiménez C; Solórzano E; Vinod Kumar GS; Hutzler S; Banhart J
    Soft Matter; 2014 Sep; 10(36):6955-62. PubMed ID: 24819033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of aqueous foam in microscale.
    Anazadehsayed A; Rezaee N; Naser J; Nguyen AV
    Adv Colloid Interface Sci; 2018 Jun; 256():203-229. PubMed ID: 29747852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchically Porous Ceramics via Direct Writing of Binary Colloidal Gel Foams.
    Román-Manso B; Muth J; Gibson LJ; Ruettinger W; Lewis JA
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8976-8984. PubMed ID: 33577284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Architected cellular ceramics with tailored stiffness via direct foam writing.
    Muth JT; Dixon PG; Woish L; Gibson LJ; Lewis JA
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1832-1837. PubMed ID: 28179570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometry and Topology of Two-Dimensional Dry Foams: Computer Simulation and Experimental Characterization.
    Tong M; Cole K; Brito-Parada PR; Neethling S; Cilliers JJ
    Langmuir; 2017 Apr; 33(15):3839-3846. PubMed ID: 28345923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benefits of polidocanol endovenous microfoam (Varithena®) compared with physician-compounded foams.
    Carugo D; Ankrett DN; Zhao X; Zhang X; Hill M; O'Byrne V; Hoad J; Arif M; Wright DD; Lewis AL
    Phlebology; 2016 May; 31(4):283-95. PubMed ID: 26036246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microgravity research during aircraft parabolic flights: the 20 ESA campaigns.
    Pletser V
    ESA Bull; 1995 May; 82():9 p.. PubMed ID: 14971370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discontinuous pore fluid distribution under microgravity--KC-135 flight investigations.
    Reddi LN; Xiao M; Steinberg SL
    Soil Sci Soc Am J; 2005; 69(3):593-8. PubMed ID: 16052743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Object size effects on initial lifting forces under microgravity conditions.
    Kingma I; Savelsbergh GJ; Tousaint HM
    Exp Brain Res; 1999 Feb; 124(4):422-8. PubMed ID: 10090654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes.
    Xue Z; Worthen A; Qajar A; Robert I; Bryant SL; Huh C; Prodanović M; Johnston KP
    J Colloid Interface Sci; 2016 Jan; 461():383-395. PubMed ID: 26414421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial Stabilization of Fiber-Laden Foams with Carboxymethylated Lignin toward Strong Nonwoven Networks.
    Li S; Xiang W; Järvinen M; Lappalainen T; Salminen K; Rojas OJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19827-35. PubMed ID: 27398988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal Stiffness in Prone and Upright Postures During 0-1.8 g Induced by Parabolic Flight.
    Swanenburg J; Meier ML; Langenfeld A; Schweinhardt P; Humphreys BK
    Aerosp Med Hum Perform; 2018 Jun; 89(6):563-567. PubMed ID: 29789091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.