These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34934084)

  • 1. Multi-step ahead predictive model for blood glucose concentrations of type-1 diabetic patients.
    Zaidi SMA; Chandola V; Ibrahim M; Romanski B; Mastrandrea LD; Singh T
    Sci Rep; 2021 Dec; 11(1):24332. PubMed ID: 34934084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GluNet: A Deep Learning Framework for Accurate Glucose Forecasting.
    Li K; Liu C; Zhu T; Herrero P; Georgiou P
    IEEE J Biomed Health Inform; 2020 Feb; 24(2):414-423. PubMed ID: 31369390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Hour Blood Glucose Prediction in Type 1 Diabetes: A Patient-Specific Approach Using Shallow Neural Network Models.
    Kushner T; Breton MD; Sankaranarayanan S
    Diabetes Technol Ther; 2020 Dec; 22(12):883-891. PubMed ID: 32324062
    [No Abstract]   [Full Text] [Related]  

  • 5. Convolutional Recurrent Neural Networks for Glucose Prediction.
    Li K; Daniels J; Liu C; Herrero P; Georgiou P
    IEEE J Biomed Health Inform; 2020 Feb; 24(2):603-613. PubMed ID: 30946685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A personalized blood glucose level prediction model with a fine-tuning strategy: A proof-of-concept study.
    Seo W; Park SW; Kim N; Jin SM; Park SM
    Comput Methods Programs Biomed; 2021 Nov; 211():106424. PubMed ID: 34598081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The surveillance error grid.
    Klonoff DC; Lias C; Vigersky R; Clarke W; Parkes JL; Sacks DB; Kirkman MS; Kovatchev B;
    J Diabetes Sci Technol; 2014 Jul; 8(4):658-72. PubMed ID: 25562886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization and Evaluation of an Intelligent Short-Term Blood Glucose Prediction Model Based on Noninvasive Monitoring and Deep Learning Techniques.
    Zhang Y; Gao G
    J Healthc Eng; 2022; 2022():8956850. PubMed ID: 35449869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-Term Prediction of Blood Glucose Levels in Type 1 Diabetes Using a CNN-LSTM-Based Deep Neural Network.
    Jaloli M; Cescon M
    J Diabetes Sci Technol; 2023 Nov; 17(6):1590-1601. PubMed ID: 35466701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaotic time series prediction for glucose dynamics in type 1 diabetes mellitus using regime-switching models.
    Frandes M; Timar B; Timar R; Lungeanu D
    Sci Rep; 2017 Jul; 7(1):6232. PubMed ID: 28740090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking Machine Learning Algorithms on Blood Glucose Prediction for Type I Diabetes in Comparison With Classical Time-Series Models.
    Xie J; Wang Q
    IEEE Trans Biomed Eng; 2020 Nov; 67(11):3101-3124. PubMed ID: 32091990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction.
    Rabby MF; Tu Y; Hossen MI; Lee I; Maida AS; Hei X
    BMC Med Inform Decis Mak; 2021 Mar; 21(1):101. PubMed ID: 33726723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An intelligent diabetes software prototype: predicting blood glucose levels and recommending regimen changes.
    Otto E; Semotok C; Andrysek J; Basir O
    Diabetes Technol Ther; 2000; 2(4):569-76. PubMed ID: 11469620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel adaptive-weighted-average framework for blood glucose prediction.
    Wang Y; Wu X; Mo X
    Diabetes Technol Ther; 2013 Oct; 15(10):792-801. PubMed ID: 23883406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Possibility of Predicting Glycaemia 'On the Fly' with Constrained IoT Devices in Type 1 Diabetes Mellitus Patients.
    Rodríguez-Rodríguez I; Rodríguez JV; Chatzigiannakis I; Zamora Izquierdo MÁ
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comprehensive Performance Evaluation of Five Blood Glucose Systems in the Hypo-, Eu-, and Hyperglycemic Range.
    Zijlstra E; Heinemann L; Fischer A; Kapitza C
    J Diabetes Sci Technol; 2016 Nov; 10(6):1316-1323. PubMed ID: 27605592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of blood glucose predictors: the prediction-error grid analysis.
    Sivananthan S; Naumova V; Man CD; Facchinetti A; Renard E; Cobelli C; Pereverzyev SV
    Diabetes Technol Ther; 2011 Aug; 13(8):787-96. PubMed ID: 21612393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal glucose models for predicting subcutaneous glucose concentration in humans.
    Gani A; Gribok AV; Lu Y; Ward WK; Vigersky RA; Reifman J
    IEEE Trans Inf Technol Biomed; 2010 Jan; 14(1):157-65. PubMed ID: 19858035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing sensor accuracy for non-adjunct use of continuous glucose monitoring.
    Kovatchev BP; Patek SD; Ortiz EA; Breton MD
    Diabetes Technol Ther; 2015 Mar; 17(3):177-86. PubMed ID: 25436913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A personalized multitasking framework for real-time prediction of blood glucose levels in type 1 diabetes patients.
    Yang H; Li W; Tian M; Ren Y
    Math Biosci Eng; 2024 Jan; 21(2):2515-2541. PubMed ID: 38454694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.