These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34934116)

  • 1. Thermopower, figure of merit and Fermi integrals.
    Limelette P
    Sci Rep; 2021 Dec; 11(1):24323. PubMed ID: 34934116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the thermoelectric figure of merit.
    Goldsmid HJ
    Sci Technol Adv Mater; 2021 Apr; 22(1):280-284. PubMed ID: 33907527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The best thermoelectric.
    Mahan GD; Sofo JO
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7436-9. PubMed ID: 11607692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons.
    Sadeghi H; Sangtarash S; Lambert CJ
    Beilstein J Nanotechnol; 2015; 6():1176-82. PubMed ID: 26171293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic and thermal transport study of sinusoidally corrugated nanowires aiming to improve thermoelectric efficiency.
    Park KH; Martin PN; Ravaioli U
    Nanotechnology; 2016 Jan; 27(3):035401. PubMed ID: 26650977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced thermoelectric efficiency of porous silicene nanoribbons.
    Sadeghi H; Sangtarash S; Lambert CJ
    Sci Rep; 2015 Mar; 5():9514. PubMed ID: 25820162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoelectric performance of a metastable thin-film Heusler alloy.
    Hinterleitner B; Knapp I; Poneder M; Shi Y; Müller H; Eguchi G; Eisenmenger-Sittner C; Stöger-Pollach M; Kakefuda Y; Kawamoto N; Guo Q; Baba T; Mori T; Ullah S; Chen XQ; Bauer E
    Nature; 2019 Dec; 576(7785):85-90. PubMed ID: 31723266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ballistic thermoelectric transport in a Luttinger liquid.
    Ivanov YV
    J Phys Condens Matter; 2010 Jun; 22(24):245602. PubMed ID: 21393787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoelectric Conversion at 30 K in InAs/InP Nanowire Quantum Dots.
    Prete D; Erdman PA; Demontis V; Zannier V; Ercolani D; Sorba L; Beltram F; Rossella F; Taddei F; Roddaro S
    Nano Lett; 2019 May; 19(5):3033-3039. PubMed ID: 30935206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the resistivity and absolute thermoelectric power of disordered metals and alloys.
    Gasser JG
    J Phys Condens Matter; 2008 Mar; 20(11):114103. PubMed ID: 21694196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoelectric properties of a weakly coupled quantum dot: enhanced thermoelectric efficiency.
    Tsaousidou M; Triberis GP
    J Phys Condens Matter; 2010 Sep; 22(35):355304. PubMed ID: 21403283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achieving High Thermoelectric Figure of Merit in Polycrystalline SnSe via Introducing Sn Vacancies.
    Wei W; Chang C; Yang T; Liu J; Tang H; Zhang J; Li Y; Xu F; Zhang Z; Li JF; Tang G
    J Am Chem Soc; 2018 Jan; 140(1):499-505. PubMed ID: 29243922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designer thermal switches: the effect of the contact material on instantaneous thermoelectric transport through a strongly interacting quantum dot.
    Goker A; Gedik E
    J Phys Condens Matter; 2013 Sep; 25(36):365301. PubMed ID: 23941808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size- effect induced high thermoelectric figure of merit in PbSe and PbTe nanowires.
    Wrasse EO; Torres A; Baierle RJ; Fazzio A; Schmidt TM
    Phys Chem Chem Phys; 2014 May; 16(17):8114-8. PubMed ID: 24654001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance.
    Lin H; Tan G; Shen JN; Hao S; Wu LM; Calta N; Malliakas C; Wang S; Uher C; Wolverton C; Kanatzidis MG
    Angew Chem Int Ed Engl; 2016 Sep; 55(38):11431-6. PubMed ID: 27513458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between thermoelectric figure of merit and energy conversion efficiency.
    Kim HS; Liu W; Chen G; Chu CW; Ren Z
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8205-10. PubMed ID: 26100905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High cross-plane thermoelectric performance of metallo-porphyrin molecular junctions.
    Noori M; Sadeghi H; Al-Galiby Q; Bailey SWD; Lambert CJ
    Phys Chem Chem Phys; 2017 Jul; 19(26):17356-17359. PubMed ID: 28650012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoelectric Properties of Highly Conductive Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate Printed Thin Films.
    Beretta D; Barker AJ; Maqueira-Albo I; Calloni A; Bussetti G; Dell'Erba G; Luzio A; Duò L; Petrozza A; Lanzani G; Caironi M
    ACS Appl Mater Interfaces; 2017 May; 9(21):18151-18160. PubMed ID: 28466635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extreme thermopower anisotropy and interchain transport in the quasi-one-dimensional metal Li0.9Mo6O17.
    Cohn JL; Moshfeghyeganeh S; dos Santos CA; Neumeier JJ
    Phys Rev Lett; 2014 May; 112(18):186602. PubMed ID: 24856710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox control of thermopower and figure of merit in phase-coherent molecular wires.
    García-Suárez VM; Lambert CJ; Manrique DZ; Wandlowski T
    Nanotechnology; 2014 May; 25(20):205402. PubMed ID: 24784933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.