These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34934187)

  • 1. Programmable living assembly of materials by bacterial adhesion.
    Chen B; Kang W; Sun J; Zhu R; Yu Y; Xia A; Yu M; Wang M; Han J; Chen Y; Teng L; Tian Q; Yu Y; Li G; You L; Liu Z; Dai Z
    Nat Chem Biol; 2022 Mar; 18(3):289-294. PubMed ID: 34934187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleobase-Interaction-Directed Biomimetic Supramolecular Self-Assembly.
    Sikder A; Esen C; O'Reilly RK
    Acc Chem Res; 2022 Jun; 55(12):1609-1619. PubMed ID: 35671460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silk-Based Advanced Materials for Soft Electronics.
    Wang C; Xia K; Zhang Y; Kaplan DL
    Acc Chem Res; 2019 Oct; 52(10):2916-2927. PubMed ID: 31536330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological Engineered Living Materials: Growing Functional Materials with Genetically Programmable Properties.
    Gilbert C; Ellis T
    ACS Synth Biol; 2019 Jan; 8(1):1-15. PubMed ID: 30576101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering High-Yield Biopolymer Secretion Creates an Extracellular Protein Matrix for Living Materials.
    Orozco-Hidalgo MT; Charrier M; Tjahjono N; Tesoriero RF; Li D; Molinari S; Ryan KR; Ashby PD; Rad B; Ajo-Franklin CM
    mSystems; 2021 Mar; 6(2):. PubMed ID: 33758029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmable and printable Bacillus subtilis biofilms as engineered living materials.
    Huang J; Liu S; Zhang C; Wang X; Pu J; Ba F; Xue S; Ye H; Zhao T; Li K; Wang Y; Zhang J; Wang L; Fan C; Lu TK; Zhong C
    Nat Chem Biol; 2019 Jan; 15(1):34-41. PubMed ID: 30510190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Living materials with programmable functionalities grown from engineered microbial co-cultures.
    Gilbert C; Tang TC; Ott W; Dorr BA; Shaw WM; Sun GL; Lu TK; Ellis T
    Nat Mater; 2021 May; 20(5):691-700. PubMed ID: 33432140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers.
    Duraj-Thatte AM; Manjula-Basavanna A; Rutledge J; Xia J; Hassan S; Sourlis A; Rubio AG; Lesha A; Zenkl M; Kan A; Weitz DA; Zhang YS; Joshi NS
    Nat Commun; 2021 Nov; 12(1):6600. PubMed ID: 34815411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered Living Materials Based on Adhesin-Mediated Trapping of Programmable Cells.
    Guo S; Dubuc E; Rave Y; Verhagen M; Twisk SAE; van der Hek T; Oerlemans GJM; van den Oetelaar MCM; van Hazendonk LS; Brüls M; Eijkens BV; Joostens PL; Keij SR; Xing W; Nijs M; Stalpers J; Sharma M; Gerth M; Boonen RJEA; Verduin K; Merkx M; Voets IK; de Greef TFA
    ACS Synth Biol; 2020 Mar; 9(3):475-485. PubMed ID: 32105449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Host-guest self-assembly toward reversible visible-light-responsive switching for bacterial adhesion.
    Bian Q; Chen S; Xing Y; Yuan D; Lv L; Wang G
    Acta Biomater; 2018 Aug; 76():39-45. PubMed ID: 30078424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered living materials (ELMs) design: From function allocation to dynamic behavior modulation.
    Wang Y; Liu Y; Li J; Chen Y; Liu S; Zhong C
    Curr Opin Chem Biol; 2022 Oct; 70():102188. PubMed ID: 35970133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable Living Materials Constructed with the Dynamic Covalent Interface between Synthetic Polymers and Engineered
    Jo H; Sim S
    ACS Appl Mater Interfaces; 2022 May; 14(18):20729-20738. PubMed ID: 35485836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. D-amino acids inhibit initial bacterial adhesion: thermodynamic evidence.
    Xing SF; Sun XF; Taylor AA; Walker SL; Wang YF; Wang SG
    Biotechnol Bioeng; 2015 Apr; 112(4):696-704. PubMed ID: 25333717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Approach to Conjugated Polymers with Biomimetic Properties.
    Baek P; Voorhaar L; Barker D; Travas-Sejdic J
    Acc Chem Res; 2018 Jul; 51(7):1581-1589. PubMed ID: 29897228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skin-Inspired Electronics: An Emerging Paradigm.
    Wang S; Oh JY; Xu J; Tran H; Bao Z
    Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smart Actuators and Adhesives for Reconfigurable Matter.
    Ko H; Javey A
    Acc Chem Res; 2017 Apr; 50(4):691-702. PubMed ID: 28263544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wearable and Implantable Soft Bioelectronics Using Two-Dimensional Materials.
    Choi C; Lee Y; Cho KW; Koo JH; Kim DH
    Acc Chem Res; 2019 Jan; 52(1):73-81. PubMed ID: 30586292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic and programmable self-assembly of micro-rafts at the air-water interface.
    Wang W; Giltinan J; Zakharchenko S; Sitti M
    Sci Adv; 2017 May; 3(5):e1602522. PubMed ID: 28560332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmable Construction of Peptide-Based Materials in Living Subjects: From Modular Design and Morphological Control to Theranostics.
    Li LL; Qiao ZY; Wang L; Wang H
    Adv Mater; 2019 Nov; 31(45):e1804971. PubMed ID: 30450607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Stretchable, Self-Healable, Ultrasensitive Strain and Proximity Sensors Based on Skin-Inspired Conductive Film for Human Motion Monitoring.
    Du Y; Yu G; Dai X; Wang X; Yao B; Kong J
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51987-51998. PubMed ID: 33142058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.