These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 34934337)
1. Identifying Potential Diagnostic Genes for Diabetic Nephropathy Based on Hypoxia and Immune Status. Li C; Su F; Zhang L; Liu F; Fan W; Li Z; Ma J J Inflamm Res; 2021; 14():6871-6891. PubMed ID: 34934337 [TBL] [Abstract][Full Text] [Related]
2. VCAM1: an effective diagnostic marker related to immune cell infiltration in diabetic nephropathy. Deng Y; Zhang S; Luo Z; He P; Ma X; Ma Y; Wang J; Zheng L; Tian N; Dong S; Zhang X; Zhang M Front Endocrinol (Lausanne); 2024; 15():1426913. PubMed ID: 39319258 [TBL] [Abstract][Full Text] [Related]
3. Machine-learning algorithm-based prediction of a diagnostic model based on oxidative stress-related genes involved in immune infiltration in diabetic nephropathy patients. Zhu HM; Liu N; Sun DX; Luo L Front Immunol; 2023; 14():1202298. PubMed ID: 37554330 [TBL] [Abstract][Full Text] [Related]
4. Machine learning-based metabolism-related genes signature and immune infiltration landscape in diabetic nephropathy. Zhang H; Hu J; Zhu J; Li Q; Fang L Front Endocrinol (Lausanne); 2022; 13():1026938. PubMed ID: 36482994 [TBL] [Abstract][Full Text] [Related]
5. APOC1 as a novel diagnostic biomarker for DN based on machine learning algorithms and experiment. Yu K; Li S; Wang C; Zhang Y; Li L; Fan X; Fang L; Li H; Yang H; Sun J; Yang X Front Endocrinol (Lausanne); 2023; 14():1102634. PubMed ID: 36891052 [TBL] [Abstract][Full Text] [Related]
6. Identification of the molecular mechanism and candidate markers for diabetic nephropathy. Chen C; Liu L; Luo J Ann Transl Med; 2022 Nov; 10(22):1248. PubMed ID: 36544633 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive analysis of diabetic nephropathy expression profile based on weighted gene co-expression network analysis algorithm. Gholaminejad A; Fathalipour M; Roointan A BMC Nephrol; 2021 Jul; 22(1):245. PubMed ID: 34215202 [TBL] [Abstract][Full Text] [Related]
8. Identification of ferroptosis-related genes as potential diagnostic biomarkers for diabetic nephropathy based on bioinformatics. Guo B; Li M; Wu P; Chen Y Front Mol Biosci; 2023; 10():1183530. PubMed ID: 37593129 [No Abstract] [Full Text] [Related]
9. Identification and Verification of Diagnostic Biomarkers for Glomerular Injury in Diabetic Nephropathy Based on Machine Learning Algorithms. Han H; Chen Y; Yang H; Cheng W; Zhang S; Liu Y; Liu Q; Liu D; Yang G; Li K Front Endocrinol (Lausanne); 2022; 13():876960. PubMed ID: 35663304 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive Analysis of Fatty Acid Metabolism in Diabetic Nephropathy from the Perspective of Immune Landscapes, Diagnosis and Precise Therapy. Zhu E; Zhong M; Liang T; Liu Y; Wu K; Zhang Z; Zhao S; Guan H; Chen J; Zhang LZ; Zhang Y J Inflamm Res; 2024; 17():693-710. PubMed ID: 38332898 [TBL] [Abstract][Full Text] [Related]
11. Bioinformatics analysis identifies immune-related gene signatures and subtypes in diabetic nephropathy. Lu K; Wang L; Fu Y; Li G; Zhang X; Cao M Front Endocrinol (Lausanne); 2022; 13():1048139. PubMed ID: 36568106 [TBL] [Abstract][Full Text] [Related]
12. Bioinformatics Analysis Reveals Crosstalk Among Platelets, Immune Cells, and the Glomerulus That May Play an Important Role in the Development of Diabetic Nephropathy. Yao X; Shen H; Cao F; He H; Li B; Zhang H; Zhang X; Li Z Front Med (Lausanne); 2021; 8():657918. PubMed ID: 34249963 [TBL] [Abstract][Full Text] [Related]
13. Multiple-microarray analysis for identification of key genes involved in diabetic nephropathy. Bi H; Ma L; Zhong X; Long G Medicine (Baltimore); 2023 Nov; 102(46):e35985. PubMed ID: 37986381 [TBL] [Abstract][Full Text] [Related]
14. Identification of Lumican and Fibromodulin as Hub Genes Associated with Accumulation of Extracellular Matrix in Diabetic Nephropathy. Feng S; Gao Y; Yin D; Lv L; Wen Y; Li Z; Wang B; Wu M; Liu B Kidney Blood Press Res; 2021; 46(3):275-285. PubMed ID: 33887734 [TBL] [Abstract][Full Text] [Related]
15. Identification of Hub Genes and Potential ceRNA Networks of Diabetic Nephropathy by Weighted Gene Co-Expression Network Analysis. Li G; Zhang J; Liu D; Wei Q; Wang H; Lv Y; Ye Z; Liu G; Li L Front Genet; 2021; 12():767654. PubMed ID: 34790229 [TBL] [Abstract][Full Text] [Related]
16. Screening and Identification of Differentially Expressed Genes Between Diabetic Nephropathy Glomerular and Normal Glomerular via Bioinformatics Technology. Du J; Yang J; Meng L Comb Chem High Throughput Screen; 2021; 24(5):645-655. PubMed ID: 32954999 [TBL] [Abstract][Full Text] [Related]
17. Screening of key genes associated with m6A methylation in diabetic nephropathy patients by CIBERSORT and weighted gene coexpression network analysis. Yin S; Li W; Wang J; Wu H; Hu J; Feng Y Am J Transl Res; 2022; 14(4):2280-2290. PubMed ID: 35559414 [TBL] [Abstract][Full Text] [Related]
18. Nine hub genes as the potential indicator for the clinical outcome of diabetic nephropathy. Song X; Gong M; Chen Y; Liu H; Zhang J J Cell Physiol; 2019 Feb; 234(2):1461-1468. PubMed ID: 30078220 [TBL] [Abstract][Full Text] [Related]
19. Bioinformatics reveals the pathophysiological relationship between diabetic nephropathy and periodontitis in the context of aging. Yan P; Ke B; Fang X Heliyon; 2024 Jan; 10(2):e24872. PubMed ID: 38304805 [TBL] [Abstract][Full Text] [Related]
20. Investigation of hub genes involved in diabetic nephropathy using biological informatics methods. Li Z; Liu J; Wang W; Zhao Y; Yang D; Geng X Ann Transl Med; 2020 Sep; 8(17):1087. PubMed ID: 33145306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]