BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34934621)

  • 1. Overcoming glutamate auxotrophy in
    Lu KW; Wang CT; Chang H; Wang RS; Shen CR
    Metab Eng Commun; 2021 Dec; 13():e00190. PubMed ID: 34934621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli.
    Chang P; Chen GS; Chu HY; Lu KW; Shen CR
    J Biotechnol; 2017 May; 249():73-81. PubMed ID: 28366527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of modifications procuring growth on xylose in recombinant Saccharomyces cerevisiae strains carrying the Weimberg pathway.
    Borgström C; Wasserstrom L; Almqvist H; Broberg K; Klein B; Noack S; Lidén G; Gorwa-Grauslund MF
    Metab Eng; 2019 Sep; 55():1-11. PubMed ID: 31150803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alone at last! - Heterologous expression of a single gene is sufficient for establishing the five-step Weimberg pathway in
    Brüsseler C; Späth A; Sokolowsky S; Marienhagen J
    Metab Eng Commun; 2019 Dec; 9():e00090. PubMed ID: 31016135
    [No Abstract]   [Full Text] [Related]  

  • 5. Engineering Escherichia coli to grow constitutively on D-xylose using the carbon-efficient Weimberg pathway.
    Rossoni L; Carr R; Baxter S; Cortis R; Thorpe T; Eastham G; Stephens G
    Microbiology (Reading); 2018 Mar; 164(3):287-298. PubMed ID: 29458683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of the mixed-acid fermentation pathway of Escherichia coli for anaerobic production of glutamate and itaconate.
    Vuoristo KS; Mars AE; Sangra JV; Springer J; Eggink G; Sanders JP; Weusthuis RA
    AMB Express; 2015 Dec; 5(1):61. PubMed ID: 26384341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of itaconic acid pathway via co-localization of CadA and AcnA in recombinant Escherichia coli.
    Tran KT; Jeong J; Hong SH
    Biotechnol Lett; 2024 Aug; 46(4):593-600. PubMed ID: 38809464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Isomerase and Weimberg Pathway for γ-PGA Production From Xylose by Engineered
    Halmschlag B; Hoffmann K; Hanke R; Putri SP; Fukusaki E; Büchs J; Blank LM
    Front Bioeng Biotechnol; 2019; 7():476. PubMed ID: 32039180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring D-xylose oxidation in Saccharomyces cerevisiae through the Weimberg pathway.
    Wasserstrom L; Portugal-Nunes D; Almqvist H; Sandström AG; Lidén G; Gorwa-Grauslund MF
    AMB Express; 2018 Mar; 8(1):33. PubMed ID: 29508097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of itaconate production in Escherichia coli.
    Vuoristo KS; Mars AE; Sangra JV; Springer J; Eggink G; Sanders JP; Weusthuis RA
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):221-8. PubMed ID: 25277412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microaerobic growth-decoupled production of α-ketoglutarate and succinate from xylose in a one-pot process using Corynebacterium glutamicum.
    Tenhaef N; Kappelmann J; Eich A; Weiske M; Brieß L; Brüsseler C; Marienhagen J; Wiechert W; Noack S
    Biotechnol J; 2021 Sep; 16(9):e2100043. PubMed ID: 34089621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable production of 4-hydroxyisoleucine with minimised carbon loss by simultaneously utilising glucose and xylose in engineered Escherichia coli.
    Wei M; Li G; Xie H; Yang W; Xu H; Han S; Wang J; Meng Y; Xu Q; Li Y; Chen N; Zhang C
    Bioresour Technol; 2022 Jun; 354():127196. PubMed ID: 35460845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates.
    Radek A; Krumbach K; Gätgens J; Wendisch VF; Wiechert W; Bott M; Noack S; Marienhagen J
    J Biotechnol; 2014 Dec; 192 Pt A():156-60. PubMed ID: 25304460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced itaconic acid production by self-assembly of two biosynthetic enzymes in Escherichia coli.
    Yang Z; Gao X; Xie H; Wang F; Ren Y; Wei D
    Biotechnol Bioeng; 2017 Feb; 114(2):457-462. PubMed ID: 27543843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Weimberg pathway: an alternative for Myceliophthora thermophila to utilize D-xylose.
    Liu D; Zhang Y; Li J; Sun W; Yao Y; Tian C
    Biotechnol Biofuels Bioprod; 2023 Jan; 16(1):13. PubMed ID: 36691040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Corynebacterium glutamicum for the production of itaconate.
    Otten A; Brocker M; Bott M
    Metab Eng; 2015 Jul; 30():156-165. PubMed ID: 26100077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flux through citrate synthase limits the growth of ethanologenic Escherichia coli KO11 during xylose fermentation.
    Underwood SA; Buszko ML; Shanmugam KT; Ingram LO
    Appl Environ Microbiol; 2002 Mar; 68(3):1071-81. PubMed ID: 11872452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterologous expression of Mus musculus immunoresponsive gene 1 (irg1) in Escherichia coli results in itaconate production.
    Vuoristo KS; Mars AE; van Loon S; Orsi E; Eggink G; Sanders JP; Weusthuis RA
    Front Microbiol; 2015; 6():849. PubMed ID: 26347730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli.
    Kim J; Seo HM; Bhatia SK; Song HS; Kim JH; Jeon JM; Choi KY; Kim W; Yoon JJ; Kim YG; Yang YH
    Sci Rep; 2017 Jan; 7():39768. PubMed ID: 28051098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the Synergetic Effect of Xylose Metabolic Pathways on the Production of Glutaric Acid.
    Wang J; Shen X; Lin Y; Chen Z; Yang Y; Yuan Q; Yan Y
    ACS Synth Biol; 2018 Jan; 7(1):24-29. PubMed ID: 28945971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.