These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34934920)

  • 1. Observation of 4
    Yang X; Zheng Z; Hu J; Qu J; Ma D; Li J; Guo C; Li CM
    iScience; 2021 Dec; 24(12):103500. PubMed ID: 34934920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining the Transformation Kinetics of Water Oxidation Intermediates on Hematite Photoanode.
    Li D; Wei R; Sun F; Cheng Z; Yin H; Fan F; Wang X; Li C
    J Phys Chem Lett; 2023 Sep; 14(36):8069-8076. PubMed ID: 37656051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rate law analysis of water oxidation on a hematite surface.
    Le Formal F; Pastor E; Tilley SD; Mesa CA; Pendlebury SR; Grätzel M; Durrant JR
    J Am Chem Soc; 2015 May; 137(20):6629-37. PubMed ID: 25936408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Modification of Hematite Photoanodes with CeO
    Ahmed MG; Zhang M; Tay YF; Chiam SY; Wong LH
    ChemSusChem; 2020 Oct; 13(20):5489-5496. PubMed ID: 32776429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unconventional rate law of water photooxidation at TiO
    Zhang S; Leng W; Liu K
    Phys Chem Chem Phys; 2023 Apr; ():. PubMed ID: 37185623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of peroxo reaction intermediates in the water oxidation process on hematite surfaces.
    Poaty LT; Ulman K; Seriani N; M'Passi-Mabiala B; Gebauer R
    J Mol Model; 2018 Sep; 24(10):284. PubMed ID: 30229320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive photoelectrochemical methanol and water oxidation with hematite electrodes.
    Klahr B; Gimenez S; Zandi O; Fabregat-Santiago F; Hamann T
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7653-60. PubMed ID: 25804788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate-Limiting O-O Bond Formation Pathways for Water Oxidation on Hematite Photoanode.
    Zhang Y; Zhang H; Liu A; Chen C; Song W; Zhao J
    J Am Chem Soc; 2018 Mar; 140(9):3264-3269. PubMed ID: 29455534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photochemical Charge Separation in Nanocrystal Photocatalyst Films: Insights from Surface Photovoltage Spectroscopy.
    Zhao J; Osterloh FE
    J Phys Chem Lett; 2014 Mar; 5(5):782-6. PubMed ID: 26274067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface aspects of sol-gel derived hematite films for the photoelectrochemical oxidation of water.
    Herrmann-Geppert I; Bogdanoff P; Radnik J; Fengler S; Dittrich T; Fiechter S
    Phys Chem Chem Phys; 2013 Feb; 15(5):1389-98. PubMed ID: 23247669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Yang JS; Lin WH; Lin CY; Wang BS; Wu JJ
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13314-21. PubMed ID: 26027640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Interrogation Scanning Electrochemical Microscopy for a Photoelectrochemical Reaction: Water Oxidation on a Hematite Surface.
    Kim JY; Ahn HS; Bard AJ
    Anal Chem; 2018 Mar; 90(5):3045-3049. PubMed ID: 29392942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Reconstruction of Cobalt Species on Amorphous Cobalt Silicate-Coated Fluorine-Doped Hematite for Efficient Photoelectrochemical Water Oxidation.
    Chai H; Wang P; Wang T; Gao L; Li F; Jin J
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47572-47580. PubMed ID: 34607433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the Kinetics of Photocatalytic Water Oxidation on WO
    Li D; Chen R; Wang S; Zhang X; Zhang Y; Liu J; Yin H; Fan F; Shi J; Li C
    J Phys Chem Lett; 2020 Jan; 11(2):412-418. PubMed ID: 31777248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma-Induced Oxygen Vacancies in Ultrathin Hematite Nanoflakes Promoting Photoelectrochemical Water Oxidation.
    Zhu C; Li C; Zheng M; Delaunay JJ
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22355-63. PubMed ID: 26400020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Quantification of Surface Intermediates and Correlation to Discharge Products on Hematite Photoanodes Using a Combined Scanning Electrochemical Microscopy Approach.
    Krumov MR; Simpson BH; Counihan MJ; Rodríguez-López J
    Anal Chem; 2018 Mar; 90(5):3050-3057. PubMed ID: 29392940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes.
    Dunn HK; Feckl JM; Müller A; Fattakhova-Rohlfing D; Morehead SG; Roos J; Peter LM; Scheu C; Bein T
    Phys Chem Chem Phys; 2014 Nov; 16(44):24610-20. PubMed ID: 25310963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facet-Dependent Kinetics and Energetics of Hematite for Solar Water Oxidation Reactions.
    Li W; Yang KR; Yao X; He Y; Dong Q; Brudvig GW; Batista VS; Wang D
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5616-5622. PubMed ID: 29792412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.