These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34934920)
21. Cobalt-Phosphate Catalysts with Reduced Bivalent Co-Ion States and Doped Nitrogen Atoms Playing as Active Sites for Facile Adsorption, Fast Charge Transfer, and Robust Stability in Photoelectrochemical Water Oxidation. Lee H; Kim KH; Choi WH; Moon BC; Kong HJ; Kang JK ACS Appl Mater Interfaces; 2019 Nov; 11(47):44366-44374. PubMed ID: 31670934 [TBL] [Abstract][Full Text] [Related]
22. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation. Lhermitte CR; Bartlett BM Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377 [TBL] [Abstract][Full Text] [Related]
23. Charge Recombination with Fractional Reaction Orders in Water-Splitting Dye-Sensitized Photoelectrochemical Cells. Xu P; Gray CL; Xiao L; Mallouk TE J Am Chem Soc; 2018 Sep; 140(37):11647-11654. PubMed ID: 30145888 [TBL] [Abstract][Full Text] [Related]
24. Probing the role of tightly bound phosphoenolpyruvate in Escherichia coli 3-deoxy-d-manno-octulosonate 8-phosphate synthase catalysis using quantitative time-resolved electrospray ionization mass spectrometry in the millisecond time range. Li Z; Sau AK; Furdui CM; Anderson KS Anal Biochem; 2005 Aug; 343(1):35-47. PubMed ID: 15979047 [TBL] [Abstract][Full Text] [Related]
25. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Mesa CA; Francàs L; Yang KR; Garrido-Barros P; Pastor E; Ma Y; Kafizas A; Rosser TE; Mayer MT; Reisner E; Grätzel M; Batista VS; Durrant JR Nat Chem; 2020 Jan; 12(1):82-89. PubMed ID: 31636394 [TBL] [Abstract][Full Text] [Related]
26. The kinetics and mechanism of photo-assisted Ag(I)-catalysed water oxidation with S2O8(2-). Yu L; Wang J; Guo D; You W; Liu M; Zhang L; Li C Dalton Trans; 2015 Jan; 44(2):710-7. PubMed ID: 25386974 [TBL] [Abstract][Full Text] [Related]
27. Sn-doped hematite modified by CaMn Liu A; Zhang C; Zhu Y; Li K; Huang J; Du Y; Yang P J Colloid Interface Sci; 2019 Feb; 535():408-414. PubMed ID: 30317081 [TBL] [Abstract][Full Text] [Related]
28. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. Seabold JA; Choi KS J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661 [TBL] [Abstract][Full Text] [Related]
29. Water oxidation catalysis: effects of nickel incorporation on the structural and chemical properties of the α-Fe₂O₃(0001) surface. Zhao P; Koel BE ACS Appl Mater Interfaces; 2014 Dec; 6(24):22289-96. PubMed ID: 25423044 [TBL] [Abstract][Full Text] [Related]
30. Activation of a Nickel-Based Oxygen Evolution Reaction Catalyst on a Hematite Photoanode via Incorporation of Cerium for Photoelectrochemical Water Oxidation. Lim H; Kim JY; Evans EJ; Rai A; Kim JH; Wygant BR; Mullins CB ACS Appl Mater Interfaces; 2017 Sep; 9(36):30654-30661. PubMed ID: 28813595 [TBL] [Abstract][Full Text] [Related]
31. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting. Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924 [TBL] [Abstract][Full Text] [Related]
32. Direct in Situ Measurement of Charge Transfer Processes During Photoelectrochemical Water Oxidation on Catalyzed Hematite. Qiu J; Hajibabaei H; Nellist MR; Laskowski FAL; Hamann TW; Boettcher SW ACS Cent Sci; 2017 Sep; 3(9):1015-1025. PubMed ID: 28979943 [TBL] [Abstract][Full Text] [Related]
33. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. Somorjai GA; Frei H; Park JY J Am Chem Soc; 2009 Nov; 131(46):16589-605. PubMed ID: 19919130 [TBL] [Abstract][Full Text] [Related]
34. How surface potential determines the kinetics of the first hole transfer of photocatalytic water oxidation. Waegele MM; Chen X; Herlihy DM; Cuk T J Am Chem Soc; 2014 Jul; 136(30):10632-9. PubMed ID: 25029360 [TBL] [Abstract][Full Text] [Related]
35. Multistep Surface Trap State Finishing Based on in Situ One-Step MOF Modification over Hematite for Dramatically Enhanced Solar Water Oxidation. Chen S; Li J; Wang J; Zhu H; Bai J; Zhang Y; Zhou T; Zhou M; Zhou B ACS Appl Mater Interfaces; 2020 Jul; 12(30):33638-33646. PubMed ID: 32666781 [TBL] [Abstract][Full Text] [Related]
36. Smoothing Surface Trapping States in 3D Coral-Like CoOOH-Wrapped-BiVO Tang F; Cheng W; Su H; Zhao X; Liu Q ACS Appl Mater Interfaces; 2018 Feb; 10(7):6228-6234. PubMed ID: 29384358 [TBL] [Abstract][Full Text] [Related]
37. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Wang G; Ling Y; Lu X; Zhai T; Qian F; Tong Y; Li Y Nanoscale; 2013 May; 5(10):4129-33. PubMed ID: 23563928 [TBL] [Abstract][Full Text] [Related]
38. High-resolution kinetic studies of the reassembly of the tetra-manganese cluster of photosynthetic water oxidation: proton equilibrium, cations, and electrostatics. Ananyev GM; Dismukes GC Biochemistry; 1996 Nov; 35(46):14608-17. PubMed ID: 8931559 [TBL] [Abstract][Full Text] [Related]
39. Dual Influence of Reduction Annealing on Diffused Hematite/FTO Junction for Enhanced Photoelectrochemical Water Oxidation. Yang X; Liu R; Lei Y; Li P; Wang K; Zheng Z; Wang D ACS Appl Mater Interfaces; 2016 Jun; 8(25):16476-85. PubMed ID: 27275513 [TBL] [Abstract][Full Text] [Related]
40. Revealing the Influence of Doping and Surface Treatment on the Surface Carrier Dynamics in Hematite Nanorod Photoanodes. Gurudayal ; Peter LM; Wong LH; Abdi FF ACS Appl Mater Interfaces; 2017 Nov; 9(47):41265-41272. PubMed ID: 29099583 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]