These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 34935061)

  • 1. Role of MRI‑based radiomics in locally advanced rectal cancer (Review).
    Zhang S; Yu M; Chen D; Li P; Tang B; Li J
    Oncol Rep; 2022 Feb; 47(2):. PubMed ID: 34935061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does restaging MRI radiomics analysis improve pathological complete response prediction in rectal cancer patients? A prognostic model development.
    Chiloiro G; Cusumano D; de Franco P; Lenkowicz J; Boldrini L; Carano D; Barbaro B; Corvari B; Dinapoli N; Giraffa M; Meldolesi E; Manfredi R; Valentini V; Gambacorta MA
    Radiol Med; 2022 Jan; 127(1):11-20. PubMed ID: 34725772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiomics signature as a new biomarker for preoperative prediction of neoadjuvant chemoradiotherapy response in locally advanced rectal cancer.
    Zhang Z; Jiang X; Zhang R; Yu T; Liu S; Luo Y
    Diagn Interv Radiol; 2021 May; 27(3):308-314. PubMed ID: 34003118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy.
    Shin J; Seo N; Baek SE; Son NH; Lim JS; Kim NK; Koom WS; Kim S
    Radiology; 2022 May; 303(2):351-358. PubMed ID: 35133200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prognostic prediction value of the clinical-radiomics tumour-stroma ratio in locally advanced rectal cancer.
    Cai C; Hu T; Rong Z; Gong J; Tong T
    Eur J Radiol; 2024 Jan; 170():111254. PubMed ID: 38091662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting pathological complete response by comparing MRI-based radiomics pre- and postneoadjuvant radiotherapy for locally advanced rectal cancer.
    Li Y; Liu W; Pei Q; Zhao L; Güngör C; Zhu H; Song X; Li C; Zhou Z; Xu Y; Wang D; Tan F; Yang P; Pei H
    Cancer Med; 2019 Dec; 8(17):7244-7252. PubMed ID: 31642204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selecting Candidates for Organ-Preserving Strategies After Neoadjuvant Chemoradiotherapy for Rectal Cancer: Development and Validation of a Model Integrating MRI Radiomics and Pathomics.
    Wan L; Sun Z; Peng W; Wang S; Li J; Zhao Q; Wang S; Ouyang H; Zhao X; Zou S; Zhang H
    J Magn Reson Imaging; 2022 Oct; 56(4):1130-1142. PubMed ID: 35142001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics of locally advanced rectal cancer: machine learning-based prediction of response to neoadjuvant chemoradiotherapy using pre-treatment sagittal T2-weighted MRI.
    Yardimci AH; Kocak B; Sel I; Bulut H; Bektas CT; Cin M; Dursun N; Bektas H; Mermut O; Yardimci VH; Kilickesmez O
    Jpn J Radiol; 2023 Jan; 41(1):71-82. PubMed ID: 35962933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Wan L; Peng W; Zou S; Ye F; Geng Y; Ouyang H; Zhao X; Zhang H
    Acad Radiol; 2021 Nov; 28 Suppl 1():S95-S104. PubMed ID: 33189550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Cui Y; Yang X; Shi Z; Yang Z; Du X; Zhao Z; Cheng X
    Eur Radiol; 2019 Mar; 29(3):1211-1220. PubMed ID: 30128616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiparametric MRI-based Radiomics approaches on predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer.
    Cheng Y; Luo Y; Hu Y; Zhang Z; Wang X; Yu Q; Liu G; Cui E; Yu T; Jiang X
    Abdom Radiol (NY); 2021 Nov; 46(11):5072-5085. PubMed ID: 34302510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MOREOVER: multiomics MR-guided radiotherapy optimization in locally advanced rectal cancer.
    Boldrini L; Chiloiro G; Di Franco S; Romano A; Smiljanic L; Tran EH; Bono F; Charles Davies D; Lopetuso L; De Bonis M; Minucci A; Giacò L; Cusumano D; Placidi L; Giannarelli D; Sala E; Gambacorta MA
    Radiat Oncol; 2024 Jul; 19(1):94. PubMed ID: 39054479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC).
    Crimì F; Capelli G; Spolverato G; Bao QR; Florio A; Milite Rossi S; Cecchin D; Albertoni L; Campi C; Pucciarelli S; Stramare R
    Radiol Med; 2020 Dec; 125(12):1216-1224. PubMed ID: 32410063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pretreatment MRI-Based Radiomics for Prediction of Rectal Cancer Outcome: A Discovery and Validation Study.
    Huang H; Han L; Guo J; Zhang Y; Lin S; Chen S; Lin X; Cheng C; Guo Z; Qiu Y
    Acad Radiol; 2024 May; 31(5):1878-1888. PubMed ID: 37996362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of MRI and CT-based radiomics features for personalized treatment in locally advanced rectal cancer and external validation of published radiomics models.
    Shahzadi I; Zwanenburg A; Lattermann A; Linge A; Baldus C; Peeken JC; Combs SE; Diefenhardt M; Rödel C; Kirste S; Grosu AL; Baumann M; Krause M; Troost EGC; Löck S
    Sci Rep; 2022 Jun; 12(1):10192. PubMed ID: 35715462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning radiomics-based prediction of distant metastasis in patients with locally advanced rectal cancer after neoadjuvant chemoradiotherapy: A multicentre study.
    Liu X; Zhang D; Liu Z; Li Z; Xie P; Sun K; Wei W; Dai W; Tang Z; Ding Y; Cai G; Tong T; Meng X; Tian J
    EBioMedicine; 2021 Jul; 69():103442. PubMed ID: 34157487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRI-Based Radiomics Predicts Tumor Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer.
    Yi X; Pei Q; Zhang Y; Zhu H; Wang Z; Chen C; Li Q; Long X; Tan F; Zhou Z; Liu W; Li C; Zhou Y; Song X; Li Y; Liao W; Li X; Sun L; Pei H; Zee C; Chen BT
    Front Oncol; 2019; 9():552. PubMed ID: 31293979
    [No Abstract]   [Full Text] [Related]  

  • 18. Attention mechanism based multi-sequence MRI fusion improves prediction of response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Zhou X; Yu Y; Feng Y; Ding G; Liu P; Liu L; Ren W; Zhu Y; Cao W
    Radiat Oncol; 2023 Oct; 18(1):175. PubMed ID: 37891611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of MRI-based radiomics in predicting pathological complete response to neoadjuvant chemoradiotherapy of locally advanced rectal cancer: A narrative review.
    Li Y; Liu X; Gu M; Xu T; Ge C; Chang P
    Cancer Radiother; 2024 Aug; 28(4):390-401. PubMed ID: 39174361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning-based multiparametric MRI radiomics for predicting poor responders after neoadjuvant chemoradiotherapy in rectal Cancer patients.
    Wang J; Chen J; Zhou R; Gao Y; Li J
    BMC Cancer; 2022 Apr; 22(1):420. PubMed ID: 35439946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.