These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 34935781)
21. Replacing C189 in the bZIP domain of Zta with S, T, V, or A changes DNA binding specificity to four types of double-stranded DNA. Ray S; Tillo D; Assad N; Ufot A; Deppmann C; Durell SR; Porollo A; Vinson C Biochem Biophys Res Commun; 2018 Jul; 501(4):905-912. PubMed ID: 29772230 [TBL] [Abstract][Full Text] [Related]
22. Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA. Madugundu GS; Cadet J; Wagner JR Nucleic Acids Res; 2014 Jun; 42(11):7450-60. PubMed ID: 24852253 [TBL] [Abstract][Full Text] [Related]
24. 5-methylcytosine-sensitive variants of Thermococcus kodakaraensis DNA polymerase. Huber C; von Watzdorf J; Marx A Nucleic Acids Res; 2016 Nov; 44(20):9881-9890. PubMed ID: 27651460 [TBL] [Abstract][Full Text] [Related]
25. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Jin SG; Kadam S; Pfeifer GP Nucleic Acids Res; 2010 Jun; 38(11):e125. PubMed ID: 20371518 [TBL] [Abstract][Full Text] [Related]
26. Nucleic acid modifications with epigenetic significance. Fu Y; He C Curr Opin Chem Biol; 2012 Dec; 16(5-6):516-24. PubMed ID: 23092881 [TBL] [Abstract][Full Text] [Related]
27. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Shen JC; Rideout WM; Jones PA Nucleic Acids Res; 1994 Mar; 22(6):972-6. PubMed ID: 8152929 [TBL] [Abstract][Full Text] [Related]
28. Association of modified cytosines and the methylated DNA-binding protein MeCP2 with distinctive structural domains of lampbrush chromatin. Morgan GT; Jones P; Bellini M Chromosome Res; 2012 Dec; 20(8):925-42. PubMed ID: 23149574 [TBL] [Abstract][Full Text] [Related]
29. The Epstein-Barr Virus B-ZIP Protein Zta Recognizes Specific DNA Sequences Containing 5-Methylcytosine and 5-Hydroxymethylcytosine. Tillo D; Ray S; Syed KS; Gaylor MR; He X; Wang J; Assad N; Durell SR; Porollo A; Weirauch MT; Vinson C Biochemistry; 2017 Nov; 56(47):6200-6210. PubMed ID: 29072898 [TBL] [Abstract][Full Text] [Related]
30. Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Nestor C; Ruzov A; Meehan R; Dunican D Biotechniques; 2010 Apr; 48(4):317-9. PubMed ID: 20569209 [TBL] [Abstract][Full Text] [Related]
31. A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine. Zhang L; Chen W; Iyer LM; Hu J; Wang G; Fu Y; Yu M; Dai Q; Aravind L; He C J Am Chem Soc; 2014 Apr; 136(13):4801-4. PubMed ID: 24655109 [TBL] [Abstract][Full Text] [Related]
32. Profiling DNA methylation by melting analysis. Guldberg P; Worm J; Grønbaek K Methods; 2002 Jun; 27(2):121-7. PubMed ID: 12095269 [TBL] [Abstract][Full Text] [Related]
33. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Wu H; Zhang Y Genes Dev; 2011 Dec; 25(23):2436-52. PubMed ID: 22156206 [TBL] [Abstract][Full Text] [Related]
34. Photoelectrochemical identification of 5-methylcytosine modification in DNA: combination of photosensitization and enzymatic cleavage. Tanabe K; Yamada H; Ito T; Nishimoto S Nucleic Acids Symp Ser (Oxf); 2009; (53):205-6. PubMed ID: 19749332 [TBL] [Abstract][Full Text] [Related]
36. Direct decarboxylation of ten-eleven translocation-produced 5-carboxylcytosine in mammalian genomes forms a new mechanism for active DNA demethylation. Feng Y; Chen JJ; Xie NB; Ding JH; You XJ; Tao WB; Zhang X; Yi C; Zhou X; Yuan BF; Feng YQ Chem Sci; 2021 Sep; 12(34):11322-11329. PubMed ID: 34567494 [TBL] [Abstract][Full Text] [Related]
37. Oxidized C5-methyl cytosine bases in DNA: 5-Hydroxymethylcytosine; 5-formylcytosine; and 5-carboxycytosine. Klungland A; Robertson AB Free Radic Biol Med; 2017 Jun; 107():62-68. PubMed ID: 27890639 [TBL] [Abstract][Full Text] [Related]
38. Recognition of modified cytosine variants by the DNA-binding domain of methyl-directed endonuclease McrBC. Zagorskaitė E; Manakova E; Sasnauskas G FEBS Lett; 2018 Oct; 592(19):3335-3345. PubMed ID: 30194838 [TBL] [Abstract][Full Text] [Related]
39. Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword. Ito S; Kuraoka I DNA Repair (Amst); 2015 Aug; 32():52-57. PubMed ID: 25956859 [TBL] [Abstract][Full Text] [Related]
40. Simultaneous single-molecule epigenetic imaging of DNA methylation and hydroxymethylation. Song CX; Diao J; Brunger AT; Quake SR Proc Natl Acad Sci U S A; 2016 Apr; 113(16):4338-43. PubMed ID: 27035984 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]