These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34935803)

  • 1. Ammonia synthesis on BaTiO
    Wang K; Wu Z; Jiang DE
    Phys Chem Chem Phys; 2022 Jan; 24(3):1496-1502. PubMed ID: 34935803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile formation of barium titanium oxyhydride on a titanium hydride surface as an ammonia synthesis catalyst.
    Goto Y; Kikugawa M; Kobayashi K; Manaka Y; Nanba T; Matsumoto H; Matsumoto M; Aoki M; Imagawa H
    RSC Adv; 2023 May; 13(23):15410-15415. PubMed ID: 37223413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Titanium-Based Hydrides as Heterogeneous Catalysts for Ammonia Synthesis.
    Kobayashi Y; Tang Y; Kageyama T; Yamashita H; Masuda N; Hosokawa S; Kageyama H
    J Am Chem Soc; 2017 Dec; 139(50):18240-18246. PubMed ID: 29166007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significant Roles of Surface Hydrides in Enhancing the Performance of Cu/BaTiO
    He Y; Li Y; Lei M; Polo-Garzon F; Perez-Aguilar J; Bare SR; Formo E; Kim H; Daemen L; Cheng Y; Hong K; Chi M; Jiang DE; Wu Z
    Angew Chem Int Ed Engl; 2024 Jan; 63(1):e202313389. PubMed ID: 37906130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydride in BaTiO2.5H0.5: A Labile Ligand in Solid State Chemistry.
    Masuda N; Kobayashi Y; Hernandez O; Bataille T; Paofai S; Suzuki H; Ritter C; Ichijo N; Noda Y; Takegoshi K; Tassel C; Yamamoto T; Kageyama H
    J Am Chem Soc; 2015 Dec; 137(48):15315-21. PubMed ID: 26575595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Temperature Synthesis of Perovskite Oxynitride-Hydrides as Ammonia Synthesis Catalysts.
    Kitano M; Kujirai J; Ogasawara K; Matsuishi S; Tada T; Abe H; Niwa Y; Hosono H
    J Am Chem Soc; 2019 Dec; 141(51):20344-20353. PubMed ID: 31755269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus Modification of Iron: Mechanistic Insights into Ammonia Synthesis on Fe
    Almithn A
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nature of Reactive Hydrogen for Ammonia Synthesis over a Ru/C12A7 Electride Catalyst.
    Kammert J; Moon J; Cheng Y; Daemen L; Irle S; Fung V; Liu J; Page K; Ma X; Phaneuf V; Tong J; Ramirez-Cuesta AJ; Wu Z
    J Am Chem Soc; 2020 Apr; 142(16):7655-7667. PubMed ID: 32248688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional theory calculations of the hydrazine decomposition mechanism on the planar and stepped Cu(111) surfaces.
    Tafreshi SS; Roldan A; de Leeuw NH
    Phys Chem Chem Phys; 2015 Sep; 17(33):21533-46. PubMed ID: 26219750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of ammonia synthesis on Fe
    Higham MD; Zeinalipour-Yazdi CD; Hargreaves JSJ; Catlow CRA
    Faraday Discuss; 2023 Jul; 243(0):77-96. PubMed ID: 37070492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrazine N-N Bond Cleavage over Silica-Supported Tantalum-Hydrides.
    Jia HP; Gouré E; Solans-Monfort X; Llop Castelbou J; Chow C; Taoufik M; Eisenstein O; Quadrelli EA
    Inorg Chem; 2015 Dec; 54(24):11648-59. PubMed ID: 26650850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma-Enhanced Catalytic Synthesis of Ammonia over a Ni/Al
    Wang Y; Craven M; Yu X; Ding J; Bryant P; Huang J; Tu X
    ACS Catal; 2019 Dec; 9(12):10780-10793. PubMed ID: 32064144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles study of superabundant vacancy formation in metal hydrides.
    Zhang C; Alavi A
    J Am Chem Soc; 2005 Jul; 127(27):9808-17. PubMed ID: 15998085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorene-Supported Transition-Metal Dimer for Effective N
    Tang Q; Jiang DE
    Chemphyschem; 2019 Nov; 20(22):3141-3146. PubMed ID: 31016826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In search of the bottlenecks of ammonia synthesis over Ru/Vulcan under ambient conditions.
    Aslan MY; Mete E; Uner D
    Faraday Discuss; 2023 Jul; 243(0):164-178. PubMed ID: 37021871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogenation of CO to Methanol on Ni(110) through Subsurface Hydrogen.
    Ashwell AP; Lin W; Hofman MS; Yang Y; Ratner MA; Koel BE; Schatz GC
    J Am Chem Soc; 2017 Dec; 139(48):17582-17589. PubMed ID: 29119795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition-Metal-Free Barium Hydride Mediates Dinitrogen Fixation and Ammonia Synthesis.
    Guan Y; Liu C; Wang Q; Gao W; Hansen HA; Guo J; Vegge T; Chen P
    Angew Chem Int Ed Engl; 2022 Sep; 61(39):e202205805. PubMed ID: 35918291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of Nitrogen Vacancies to Ammonia Synthesis over Metal Nitride Catalysts.
    Ye TN; Park SW; Lu Y; Li J; Sasase M; Kitano M; Hosono H
    J Am Chem Soc; 2020 Aug; 142(33):14374-14383. PubMed ID: 32787255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vacancy-enabled N
    Ye TN; Park SW; Lu Y; Li J; Sasase M; Kitano M; Tada T; Hosono H
    Nature; 2020 Jul; 583(7816):391-395. PubMed ID: 32669696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.