These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 34935883)

  • 1. Short-Term Exposure to Blue Light Shows an Inhibitory Effect on Axial Elongation in Human Eyes Independent of Defocus.
    Thakur S; Dhakal R; Verkicharla PK
    Invest Ophthalmol Vis Sci; 2021 Dec; 62(15):22. PubMed ID: 34935883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the time of day on axial length and choroidal thickness changes to hyperopic and myopic defocus in human eyes.
    Moderiano D; Do M; Hobbs S; Lam V; Sarin S; Alonso-Caneiro D; Chakraborty R
    Exp Eye Res; 2019 May; 182():125-136. PubMed ID: 30926510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of brief periods of clear vision on the defocus-mediated changes in axial length and choroidal thickness of human eyes.
    Delshad S; Collins MJ; Read SA; Vincent SJ
    Ophthalmic Physiol Opt; 2021 Jul; 41(4):932-940. PubMed ID: 33973255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of short-term peripheral myopic defocus on ocular biometrics using Fresnel "press-on" lenses in humans.
    Kubota R; Joshi NR; Samandarova I; Oliva M; Selenow A; Gupta A; Ali SR
    Sci Rep; 2021 Nov; 11(1):22690. PubMed ID: 34811408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction between homatropine and optical blur on choroidal thickness.
    Sander BP; Collins MJ; Read SA
    Ophthalmic Physiol Opt; 2018 May; 38(3):257-265. PubMed ID: 29691923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperopic defocus and diurnal changes in human choroid and axial length.
    Chakraborty R; Read SA; Collins MJ
    Optom Vis Sci; 2013 Nov; 90(11):1187-98. PubMed ID: 24061153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cone signals for spectacle-lens compensation: differential responses to short and long wavelengths.
    Rucker FJ; Wallman J
    Vision Res; 2008 Sep; 48(19):1980-91. PubMed ID: 18585403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monocular myopic defocus and daily changes in axial length and choroidal thickness of human eyes.
    Chakraborty R; Read SA; Collins MJ
    Exp Eye Res; 2012 Oct; 103():47-54. PubMed ID: 22971342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Aberration-Free, Narrowband Light on the Choroidal Thickness and Eye Length.
    Clement SP; Breher K; Domdei N; Dolata J; Wahl S
    Transl Vis Sci Technol; 2024 Apr; 13(4):30. PubMed ID: 38662401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews.
    Gawne TJ; Siegwart JT; Ward AH; Norton TT
    Exp Eye Res; 2017 Feb; 155():75-84. PubMed ID: 27979713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human axial length and choroidal thickness responses to continuous and alternating episodes of myopic and hyperopic blur.
    Delshad S; Collins MJ; Read SA; Vincent SJ
    PLoS One; 2020; 15(12):e0243076. PubMed ID: 33264356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelength Defocus and Temporal Sensitivity Affect Refractive Development in Guinea Pigs.
    Tian T; Zou L; Wu S; Liu H; Liu R
    Invest Ophthalmol Vis Sci; 2019 May; 60(6):2173-2180. PubMed ID: 31108548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additive effects of narrowband light and optical defocus on chick eye growth and refraction.
    Chun RK; Choy KY; Li KK; Lam TC; Tse DY; To CH
    Eye Vis (Lond); 2023 Apr; 10(1):15. PubMed ID: 37004128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Narrow-band, long-wavelength lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys.
    Hung LF; Arumugam B; She Z; Ostrin L; Smith EL
    Exp Eye Res; 2018 Nov; 176():147-160. PubMed ID: 29981345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The time course of the onset and recovery of axial length changes in response to imposed defocus.
    Delshad S; Collins MJ; Read SA; Vincent SJ
    Sci Rep; 2020 May; 10(1):8322. PubMed ID: 32433541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks.
    Wildsoet C; Wallman J
    Vision Res; 1995 May; 35(9):1175-94. PubMed ID: 7610579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal color contrast guides emmetropization in chick.
    Watts NS; Taylor C; Rucker FJ
    Exp Eye Res; 2021 Jan; 202():108331. PubMed ID: 33152390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Morning or Evening Narrow-band Blue Light on the Compensation to Lens-induced Hyperopic Defocus in Chicks.
    Nickla DL; Wang X; Rucker F; Chen W; Taylor C
    Optom Vis Sci; 2023 Jan; 100(1):33-42. PubMed ID: 36473083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emmetropic, But Not Myopic Human Eyes Distinguish Positive Defocus From Calculated Blur.
    Swiatczak B; Schaeffel F
    Invest Ophthalmol Vis Sci; 2021 Mar; 62(3):14. PubMed ID: 33687476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal properties of the myopic response to defocus in the guinea pig.
    Leotta AJ; Bowrey HE; Zeng G; McFadden SA
    Ophthalmic Physiol Opt; 2013 May; 33(3):227-44. PubMed ID: 23662957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.