These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 34936067)

  • 61. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery.
    Jiao J
    Adv Drug Deliv Rev; 2008 Dec; 60(15):1663-73. PubMed ID: 18845195
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Computational modeling of drug distribution in the posterior segment of the eye: effects of device variables and positions.
    Jooybar E; Abdekhodaie MJ; Farhadi F; Cheng YL
    Math Biosci; 2014 Sep; 255():11-20. PubMed ID: 24946303
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An updated patent review on ocular drug delivery systems with potential for commercial viability.
    Srivastava R; Pathak K
    Recent Pat Drug Deliv Formul; 2011 May; 5(2):146-62. PubMed ID: 21453249
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Anterior eye segment drug delivery systems: current treatments and future challenges.
    Molokhia SA; Thomas SC; Garff KJ; Mandell KJ; Wirostko BM
    J Ocul Pharmacol Ther; 2013 Mar; 29(2):92-105. PubMed ID: 23485091
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Advances in ophthalmic preparation: the role of drug nanocrystals and lipid-based nanosystems.
    Peters MCC; Santos Neto ED; Monteiro LM; Yukuyama MN; Machado MGM; de Oliveira IF; Zanin MHA; Löbenberg R; Bou-Chacra N
    J Drug Target; 2020 Mar; 28(3):259-270. PubMed ID: 31491352
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comparison of thermosensitive in situ gels and drug-resin complex for ocular drug delivery: In vitro drug release and in vivo tissue distribution.
    Wei Y; Li C; Zhu Q; Zhang X; Guan J; Mao S
    Int J Pharm; 2020 Mar; 578():119184. PubMed ID: 32112932
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Application of lipid nanoparticles to ocular drug delivery.
    Battaglia L; Serpe L; Foglietta F; Muntoni E; Gallarate M; Del Pozo Rodriguez A; Solinis MA
    Expert Opin Drug Deliv; 2016 Dec; 13(12):1743-1757. PubMed ID: 27291069
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Posterior drug delivery via periocular route: challenges and opportunities.
    Waite D; Wang Y; Jones D; Stitt A; Raj Singh TR
    Ther Deliv; 2017 Jul; 8(8):685-699. PubMed ID: 28730942
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ocular Drug Delivery: Present Innovations and Future Challenges.
    Gote V; Sikder S; Sicotte J; Pal D
    J Pharmacol Exp Ther; 2019 Sep; 370(3):602-624. PubMed ID: 31072813
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Virtual pharmacokinetic model of human eye.
    Kotha S; Murtomäki L
    Math Biosci; 2014 Jul; 253():11-8. PubMed ID: 24721554
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Minimally invasive microneedles for ocular drug delivery.
    Thakur Singh RR; Tekko I; McAvoy K; McMillan H; Jones D; Donnelly RF
    Expert Opin Drug Deliv; 2017 Apr; 14(4):525-537. PubMed ID: 27485251
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Review of Approaches for Increasing Ophthalmic Bioavailability for Eye Drop Formulations.
    Lanier OL; Manfre MG; Bailey C; Liu Z; Sparks Z; Kulkarni S; Chauhan A
    AAPS PharmSciTech; 2021 Mar; 22(3):107. PubMed ID: 33719019
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A comprehensive review on contact lens for ophthalmic drug delivery.
    Xu J; Xue Y; Hu G; Lin T; Gou J; Yin T; He H; Zhang Y; Tang X
    J Control Release; 2018 Jul; 281():97-118. PubMed ID: 29782944
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Inner layer-embedded contact lenses for pH-triggered controlled ocular drug delivery.
    Zhu Q; Liu C; Sun Z; Zhang X; Liang N; Mao S
    Eur J Pharm Biopharm; 2018 Jul; 128():220-229. PubMed ID: 29730260
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Computational modelling of drug delivery to solid tumour: Understanding the interplay between chemotherapeutics and biological system for optimised delivery systems.
    Zhan W; Alamer M; Xu XY
    Adv Drug Deliv Rev; 2018 Jul; 132():81-103. PubMed ID: 30059703
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Controlled and continuous release ocular drug delivery systems: pros and cons.
    Abdelkader H; Alany RG
    Curr Drug Deliv; 2012 Jul; 9(4):421-30. PubMed ID: 22640036
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A comprehensive insight on ocular pharmacokinetics.
    Agrahari V; Mandal A; Agrahari V; Trinh HM; Joseph M; Ray A; Hadji H; Mitra R; Pal D; Mitra AK
    Drug Deliv Transl Res; 2016 Dec; 6(6):735-754. PubMed ID: 27798766
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Strategies for modifying drug residence time and ocular bioavailability to decrease treatment frequency for back of the eye diseases.
    Shatz W; Aaronson J; Yohe S; Kelley RF; Kalia YN
    Expert Opin Drug Deliv; 2019 Jan; 16(1):43-57. PubMed ID: 30488721
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Novel drug delivery systems for ocular therapy: With special reference to liposomal ocular delivery.
    Bhattacharjee A; Das PJ; Adhikari P; Marbaniang D; Pal P; Ray S; Mazumder B
    Eur J Ophthalmol; 2019 Jan; 29(1):113-126. PubMed ID: 29756507
    [TBL] [Abstract][Full Text] [Related]  

  • 80. MRI in ocular drug delivery.
    Li SK; Lizak MJ; Jeong EK
    NMR Biomed; 2008 Nov; 21(9):941-56. PubMed ID: 18186077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.