These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 34936434)

  • 1. Visualizing intracellular nanostructures of living cells by nanoendoscopy-AFM.
    Penedo M; Miyazawa K; Okano N; Furusho H; Ichikawa T; Alam MS; Miyata K; Nakamura C; Fukuma T
    Sci Adv; 2021 Dec; 7(52):eabj4990. PubMed ID: 34936434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for live imaging of intracellular nanoscale structures using atomic force microscopy with nanoneedle probes.
    Ichikawa T; Alam MS; Penedo M; Matsumoto K; Fujita S; Miyazawa K; Furusho H; Miyata K; Nakamura C; Fukuma T
    STAR Protoc; 2023 Sep; 4(3):102468. PubMed ID: 37481726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing the Mechanism Underlying 3D-AFM Imaging of Suspended Structures by Experiments and Simulations.
    Alam MS; Penedo M; Sumikama T; Miyazawa K; Hirahara K; Fukuma T
    Small Methods; 2024 Jun; ():e2400287. PubMed ID: 39031872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvements in fundamental performance of in-liquid frequency modulation atomic force microscopy.
    Fukuma T
    Microscopy (Oxf); 2020 Dec; 69(6):340-349. PubMed ID: 32780817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the morphological dynamics of the plasma membrane by high-speed atomic force microscopy.
    Yu Y; Yoshimura SH
    J Cell Sci; 2021 Sep; 134(17):. PubMed ID: 34468000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiparametric Atomic Force Microscopy Imaging of Biomolecular and Cellular Systems.
    Alsteens D; Müller DJ; Dufrêne YF
    Acc Chem Res; 2017 Apr; 50(4):924-931. PubMed ID: 28350161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoendoscopy-AFM for Visualizing Intracellular Nanostructures of Living Cells.
    Miyazawa K; Penedo M; Furusho H; Ichikawa T; Alam MS; Miyata K; Nakamura C; Fukuma T
    Microsc Microanal; 2023 Jul; 29(Supplement_1):782. PubMed ID: 37613502
    [No Abstract]   [Full Text] [Related]  

  • 8. Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes.
    Uchihashi T; Scheuring S
    Biochim Biophys Acta Gen Subj; 2018 Feb; 1862(2):229-240. PubMed ID: 28716648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative biomolecular imaging by dynamic nanomechanical mapping.
    Zhang S; Aslan H; Besenbacher F; Dong M
    Chem Soc Rev; 2014 Nov; 43(21):7412-29. PubMed ID: 25103915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D nanomechanical mapping of subcellular and sub-nuclear structures of living cells by multi-harmonic AFM with long-tip microcantilevers.
    Efremov YM; Suter DM; Timashev PS; Raman A
    Sci Rep; 2022 Jan; 12(1):529. PubMed ID: 35017598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of nanomechanical properties of biomolecules using atomic force microscopy.
    Kurland NE; Drira Z; Yadavalli VK
    Micron; 2012 Feb; 43(2-3):116-28. PubMed ID: 21890365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale imaging and force probing of biomolecular systems using atomic force microscopy: from single molecules to living cells.
    Li M; Dang D; Xi N; Wang Y; Liu L
    Nanoscale; 2017 Nov; 9(45):17643-17666. PubMed ID: 29135007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic Force Microscopy Protocol for Measurement of Membrane Plasticity and Extracellular Interactions in Single Neurons in Epilepsy.
    Wu X; Muthuchamy M; Reddy DS
    Front Aging Neurosci; 2016; 8():88. PubMed ID: 27199735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic force microscopy as an imaging tool to study the bio/nonbio complexes.
    Bednarikova Z; Gazova Z; Valle F; Bystrenova E
    J Microsc; 2020 Dec; 280(3):241-251. PubMed ID: 32519330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Resolution Correlative Microscopy: Bridging the Gap between Single Molecule Localization Microscopy and Atomic Force Microscopy.
    Odermatt PD; Shivanandan A; Deschout H; Jankele R; Nievergelt AP; Feletti L; Davidson MW; Radenovic A; Fantner GE
    Nano Lett; 2015 Aug; 15(8):4896-904. PubMed ID: 26121585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Holotomography and atomic force microscopy: a powerful combination to enhance cancer, microbiology and nanotoxicology research.
    Medina-Ramirez IE; Macias-Diaz JE; Masuoka-Ito D; Zapien JA
    Discov Nano; 2024 Apr; 19(1):64. PubMed ID: 38594446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micropipette-assisted atomic force microscopy for single-cell 3D manipulations and nanomechanical measurements.
    Feng Y; Li M
    Nanoscale; 2023 Aug; 15(32):13346-13358. PubMed ID: 37526589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic force microscopy imaging and 3-D reconstructions of serial thin sections of a single cell and its interior structures.
    Chen Y; Cai J; Zhao T; Wang C; Dong S; Luo S; Chen ZW
    Ultramicroscopy; 2005 Jun; 103(3):173-82. PubMed ID: 15850704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically characterizing the cortical cell nano-structure of human hair using atomic force microscopy integrated with infrared spectroscopy (AFM-IR).
    Fellows AP; Casford MTL; Davies PB
    Int J Cosmet Sci; 2022 Feb; 44(1):42-55. PubMed ID: 34820858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.