These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 34936440)
1. Molecular origins of induction and loss of photoinhibition-related energy dissipation q Nawrocki WJ; Liu X; Raber B; Hu C; de Vitry C; Bennett DIG; Croce R Sci Adv; 2021 Dec; 7(52):eabj0055. PubMed ID: 34936440 [TBL] [Abstract][Full Text] [Related]
2. Enhanced function of non-photoinhibited photosystem II complexes upon PSII photoinhibition. Gunell S; Lempiäinen T; Rintamäki E; Aro EM; Tikkanen M Biochim Biophys Acta Bioenerg; 2023 Aug; 1864(3):148978. PubMed ID: 37100340 [TBL] [Abstract][Full Text] [Related]
3. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions. Niinemets U ; Kull O Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337 [TBL] [Abstract][Full Text] [Related]
4. Higher order photoprotection mutants reveal the importance of ΔpH-dependent photosynthesis-control in preventing light induced damage to both photosystem II and photosystem I. Barbato R; Tadini L; Cannata R; Peracchio C; Jeran N; Alboresi A; Morosinotto T; Bajwa AA; Paakkarinen V; Suorsa M; Aro EM; Pesaresi P Sci Rep; 2020 Apr; 10(1):6770. PubMed ID: 32317747 [TBL] [Abstract][Full Text] [Related]
5. Impact of energy limitations on function and resilience in long-wavelength Photosystem II. Viola S; Roseby W; Santabarbara S; Nürnberg D; Assunção R; Dau H; Sellés J; Boussac A; Fantuzzi A; Rutherford AW Elife; 2022 Jul; 11():. PubMed ID: 35852834 [TBL] [Abstract][Full Text] [Related]
6. Comparative time-resolved photosystem II chlorophyll a fluorescence analyses reveal distinctive differences between photoinhibitory reaction center damage and xanthophyll cycle-dependent energy dissipation. Gilmore AM; Hazlett TL; Debrunner PG; Govindjee Photochem Photobiol; 1996 Sep; 64(3):552-63. PubMed ID: 8806231 [TBL] [Abstract][Full Text] [Related]
7. Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. Tikkanen M; Mekala NR; Aro EM Biochim Biophys Acta; 2014 Jan; 1837(1):210-5. PubMed ID: 24161359 [TBL] [Abstract][Full Text] [Related]
8. Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Nishiyama Y; Allakhverdiev SI; Murata N Physiol Plant; 2011 May; 142(1):35-46. PubMed ID: 21320129 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanisms of light stress of photosynthesis. Vass I; Cser K; Cheregi O Ann N Y Acad Sci; 2007 Oct; 1113():114-22. PubMed ID: 17513459 [TBL] [Abstract][Full Text] [Related]
10. Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem II. Oquist G; Chow WS; Anderson JM Planta; 1992 Feb; 186(3):450-60. PubMed ID: 24186743 [TBL] [Abstract][Full Text] [Related]
12. Regulation of photosynthetic electron transport and photoinhibition. Roach T; Krieger-Liszkay A Curr Protein Pept Sci; 2014; 15(4):351-62. PubMed ID: 24678670 [TBL] [Abstract][Full Text] [Related]
13. Vulnerability of photosynthesis and photosystem I in Jerusalem artichoke (Helianthus tuberosus L.) exposed to waterlogging. Yan K; Zhao S; Cui M; Han G; Wen P Plant Physiol Biochem; 2018 Apr; 125():239-246. PubMed ID: 29477087 [TBL] [Abstract][Full Text] [Related]
14. Sunlight-induced repair of photosystem II in moss Bhatt U; Sharma S; Kalaji HM; Strasser RJ; Chomontowski C; Soni V Funct Plant Biol; 2023 Oct; 50(10):777-791. PubMed ID: 37696295 [TBL] [Abstract][Full Text] [Related]
15. Photoinhibition of photosystem II in vivo is preceded by down-regulation through light-induced acidification of the lumen: Consequences for the mechanism of photoinhibition in vivo. van Wijk KJ; van Hasselt PR Planta; 1993 Mar; 189(3):359-68. PubMed ID: 24178492 [TBL] [Abstract][Full Text] [Related]
16. Reaction Center Excitation in Photosystem II: From Multiscale Modeling to Functional Principles. Sirohiwal A; Pantazis DA Acc Chem Res; 2023 Nov; 56(21):2921-2932. PubMed ID: 37844298 [TBL] [Abstract][Full Text] [Related]
17. Light energy allocation at PSII under field light conditions: how much energy is lost in NPQ-associated dissipation? Endo T; Uebayashi N; Ishida S; Ikeuchi M; Sato F Plant Physiol Biochem; 2014 Aug; 81():115-20. PubMed ID: 24726274 [TBL] [Abstract][Full Text] [Related]
18. Natural isoforms of the Photosystem II D1 subunit differ in photoassembly efficiency of the water-oxidizing complex. Vinyard DJ; Sun JS; Gimpel J; Ananyev GM; Mayfield SP; Charles Dismukes G Photosynth Res; 2016 May; 128(2):141-50. PubMed ID: 26687161 [TBL] [Abstract][Full Text] [Related]
19. Psb27, a photosystem II assembly protein, enables quenching of excess light energy during its participation in the PSII lifecycle. Johnson VM; Biswas S; Roose JL; Pakrasi HB; Liu H Photosynth Res; 2022 Jun; 152(3):297-304. PubMed ID: 34985637 [TBL] [Abstract][Full Text] [Related]
20. The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. Murata N; Allakhverdiev SI; Nishiyama Y Biochim Biophys Acta; 2012 Aug; 1817(8):1127-33. PubMed ID: 22387427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]