These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Potok ME; Nix DA; Parnell TJ; Cairns BR Cell; 2013 May; 153(4):759-72. PubMed ID: 23663776 [TBL] [Abstract][Full Text] [Related]
44. Broad domains of histone H3 lysine 4 trimethylation in transcriptional regulation and disease. Park S; Kim GW; Kwon SH; Lee JS FEBS J; 2020 Jul; 287(14):2891-2902. PubMed ID: 31967712 [TBL] [Abstract][Full Text] [Related]
45. UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Liu X; Gao Q; Li P; Zhao Q; Zhang J; Li J; Koseki H; Wong J Nat Commun; 2013; 4():1563. PubMed ID: 23463006 [TBL] [Abstract][Full Text] [Related]
46. Differentially methylated regions identified in bovine embryos are not observed in adulthood. Vargas LN; Nochi ARF; de Castro PS; Cunha ATM; Silva TCF; Togawa RC; Silveira MM; Caetano AR; Franco MM Anim Reprod; 2023; 20(1):e20220076. PubMed ID: 36938311 [TBL] [Abstract][Full Text] [Related]
47. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers. Agirre X; Castellano G; Pascual M; Heath S; Kulis M; Segura V; Bergmann A; Esteve A; Merkel A; Raineri E; Agueda L; Blanc J; Richardson D; Clarke L; Datta A; Russiñol N; Queirós AC; Beekman R; Rodríguez-Madoz JR; San José-Enériz E; Fang F; Gutiérrez NC; García-Verdugo JM; Robson MI; Schirmer EC; Guruceaga E; Martens JH; Gut M; Calasanz MJ; Flicek P; Siebert R; Campo E; Miguel JF; Melnick A; Stunnenberg HG; Gut IG; Prosper F; Martín-Subero JI Genome Res; 2015 Apr; 25(4):478-87. PubMed ID: 25644835 [TBL] [Abstract][Full Text] [Related]
48. Environmental chemicals differentially affect epigenetic-related mechanisms in the zebrafish liver (ZF-L) cell line and in zebrafish embryos. Blanc M; Rüegg J; Scherbak N; Keiter SH Aquat Toxicol; 2019 Oct; 215():105272. PubMed ID: 31442592 [TBL] [Abstract][Full Text] [Related]
49. Examination of DNA methyltransferase expression in cloned embryos reveals an essential role for Dnmt1 in bovine development. Golding MC; Williamson GL; Stroud TK; Westhusin ME; Long CR Mol Reprod Dev; 2011 May; 78(5):306-17. PubMed ID: 21480430 [TBL] [Abstract][Full Text] [Related]
50. Windows of opportunity: Ocean warming shapes temperature-sensitive epigenetic reprogramming and gene expression across gametogenesis and embryogenesis in marine stickleback. Fellous A; Wegner KM; John U; Mark FC; Shama LNS Glob Chang Biol; 2022 Jan; 28(1):54-71. PubMed ID: 34669228 [TBL] [Abstract][Full Text] [Related]
51. Aberrant Epigenetic Reprogramming in the First Cell Cycle of Bovine Somatic Cell Nuclear Transfer Embryos. Wang L; Liu L; Wang Y; Li N; Zhu H; Chen M; Bai J; Pang Y; Zhang Y; Zhang H Cell Reprogram; 2021 Apr; 23(2):99-107. PubMed ID: 33861636 [TBL] [Abstract][Full Text] [Related]
53. Chaetocin Improves Pig Cloning Efficiency by Enhancing Epigenetic Reprogramming and Autophagic Activity. Jeong PS; Sim BW; Park SH; Kim MJ; Kang HG; Nanjidsuren T; Lee S; Song BS; Koo DB; Kim SU Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32650566 [TBL] [Abstract][Full Text] [Related]
54. Histone methyltransferase SMYD3 regulates the expression of transcriptional factors during bovine oocyte maturation and early embryonic development. Bai H; Li Y; Gao H; Dong Y; Han P; Yu H Cytotechnology; 2016 Aug; 68(4):849-59. PubMed ID: 25563599 [TBL] [Abstract][Full Text] [Related]
55. A pre-neoplastic epigenetic field defect in HCV-infected liver at transcription factor binding sites and polycomb targets. Wijetunga NA; Pascual M; Tozour J; Delahaye F; Alani M; Adeyeye M; Wolkoff AW; Verma A; Greally JM Oncogene; 2017 Apr; 36(14):2030-2044. PubMed ID: 27721404 [TBL] [Abstract][Full Text] [Related]
56. Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer. Eilertsen KJ; Power RA; Harkins LL; Misica P Anim Reprod Sci; 2007 Mar; 98(1-2):129-46. PubMed ID: 17166676 [TBL] [Abstract][Full Text] [Related]
57. Locus-specific DNA methylation reprogramming during early porcine embryogenesis. Zhao MT; Rivera RM; Prather RS Biol Reprod; 2013 Feb; 88(2):48. PubMed ID: 23303676 [TBL] [Abstract][Full Text] [Related]
58. Maternal UHRF1 Is Essential for Transcription Landscapes and Repression of Repetitive Elements During the Maternal-to-Zygotic Transition. Wu Y; Dong J; Feng S; Zhao Q; Duan P; Xiong M; Wen Y; Lv C; Wang X; Yuan S Front Cell Dev Biol; 2020; 8():610773. PubMed ID: 33634103 [TBL] [Abstract][Full Text] [Related]
59. Epigenetic plasticity of enhancers in cancer. Yao J; Chen J; Li LY; Wu M Transcription; 2020 Feb; 11(1):26-36. PubMed ID: 31944157 [TBL] [Abstract][Full Text] [Related]
60. Loss of the DNA methyltransferase MET1 Induces H3K9 hypermethylation at PcG target genes and redistribution of H3K27 trimethylation to transposons in Arabidopsis thaliana. Deleris A; Stroud H; Bernatavichute Y; Johnson E; Klein G; Schubert D; Jacobsen SE PLoS Genet; 2012; 8(11):e1003062. PubMed ID: 23209430 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]