These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34936446)

  • 1. Fatigue in assemblies of indefatigable carbon nanotubes.
    Gupta N; Penev ES; Yakobson BI
    Sci Adv; 2021 Dec; 7(52):eabj6996. PubMed ID: 34936446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal Strength Scaling in Carbon Nanotube Bundles with Frictional Load Transfer.
    Gupta N; Alred JM; Penev ES; Yakobson BI
    ACS Nano; 2021 Jan; 15(1):1342-1350. PubMed ID: 33381972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-Dependent Synergistic Effect of Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets on the Tensile Quasi-Static and Fatigue Properties of Epoxy Nanocomposites.
    Jen YM; Chang HH; Lu CM; Liang SY
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33379328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significant curvature effects of partially charged carbon nanotubes on electrolyte behavior investigated using Monte Carlo simulations.
    Ohba T
    Phys Chem Chem Phys; 2016 Jun; 18(21):14543-8. PubMed ID: 27181336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene nanoribbon composites.
    Rafiee MA; Lu W; Thomas AV; Zandiatashbar A; Rafiee J; Tour JM; Koratkar NA
    ACS Nano; 2010 Dec; 4(12):7415-20. PubMed ID: 21080652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement in Tensile Quasi-Static and Fatigue Properties of Carbon Fiber-Reinforced Epoxy Laminates with Matrices Modified by Carbon Nanotubes and Graphene Nanoplatelets Hybrid Nanofillers.
    Jen YM; Huang YC
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Piezoresistive effect in carbon nanotube fibers.
    Lekawa-Raus A; Koziol KK; Windle AH
    ACS Nano; 2014 Nov; 8(11):11214-24. PubMed ID: 25337627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoscale mechanics of twisting carbon nanotube yarns.
    Mirzaeifar R; Qin Z; Buehler MJ
    Nanoscale; 2015 Mar; 7(12):5435-45. PubMed ID: 25732328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced mechanical properties of nanocomposites at low graphene content.
    Rafiee MA; Rafiee J; Wang Z; Song H; Yu ZZ; Koratkar N
    ACS Nano; 2009 Dec; 3(12):3884-90. PubMed ID: 19957928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based design of carbon nanotubes as HIV-1 protease inhibitors: atomistic and coarse-grained simulations.
    Cheng Y; Li D; Ji B; Shi X; Gao H
    J Mol Graph Model; 2010 Sep; 29(2):171-7. PubMed ID: 20580296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H
    J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Dispersing Multiwalled Carbon Nanotubes and Graphene Nanoplatelets Hybrids in the Matrix on the Flexural Fatigue Properties of Carbon/Epoxy Composites.
    Jen YM; Ni WL
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergy derived by combining graphene and carbon nanotubes as nanofillers in composites.
    Yavari F; Chen L; Zandiatashbar A; Yu Z; Koratkar N
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3165-9. PubMed ID: 22849081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Study of Nanocarbon-Based Flexible Multifunctional Composite Electrodes.
    Cui X; Tian J; Zhang C; Cai R; Ma J; Yang Z; Meng Q
    ACS Omega; 2021 Feb; 6(4):2526-2541. PubMed ID: 33553871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical reinforcement of polymeric fibers through peptide nanotube incorporation.
    Rubin DJ; Nia HT; Desire T; Nguyen PQ; Gevelber M; Ortiz C; Joshi NS
    Biomacromolecules; 2013 Oct; 14(10):3370-5. PubMed ID: 24070499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue.
    Kim KH; Oh Y; Islam MF
    Nat Nanotechnol; 2012 Sep; 7(9):562-6. PubMed ID: 22820743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable Preparation and Strengthening Strategies towards High-Strength Carbon Nanotube Fibers.
    Zhu Y; Yue H; Aslam MJ; Bai Y; Zhu Z; Wei F
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational analysis of the insertion of carbon nanotubes into cellular membranes.
    Höfinger S; Melle-Franco M; Gallo T; Cantelli A; Calvaresi M; Gomes JA; Zerbetto F
    Biomaterials; 2011 Oct; 32(29):7079-85. PubMed ID: 21723603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical Properties Enhancement of Carbon Nanotube Yarns by Cyclic Loading.
    Weizman O; Mead J; Dodiuk H; Kenig S
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33092170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.