These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 34936514)

  • 1. Clustering analysis of movement kinematics in reinforcement learning.
    Sidarta A; Komar J; Ostry DJ
    J Neurophysiol; 2022 Feb; 127(2):341-353. PubMed ID: 34936514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between motor exploration and reinforcement learning.
    Uehara S; Mawase F; Therrien AS; Cherry-Allen KM; Celnik P
    J Neurophysiol; 2019 Aug; 122(2):797-808. PubMed ID: 31242063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatic and Reinforcement-Based Plasticity in the Initial Stages of Human Motor Learning.
    Sidarta A; Vahdat S; Bernardi NF; Ostry DJ
    J Neurosci; 2016 Nov; 36(46):11682-11692. PubMed ID: 27852776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinforcement Learning May Demystify the Limited Human Motor Learning Efficacy Due to Visual-Proprioceptive Mismatch.
    Choi K; Choe Y; Park H
    Int J Neural Syst; 2024 Jul; 34(7):2450037. PubMed ID: 38655914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Somatosensory working memory in human reinforcement-based motor learning.
    Sidarta A; van Vugt FT; Ostry DJ
    J Neurophysiol; 2018 Dec; 120(6):3275-3286. PubMed ID: 30354856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dual process account of coarticulation in motor skill acquisition.
    Shah A; Barto AG; Fagg AH
    J Mot Behav; 2013; 45(6):531-49. PubMed ID: 24116847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frontal theta reflects uncertainty and unexpectedness during exploration and exploitation.
    Cavanagh JF; Figueroa CM; Cohen MX; Frank MJ
    Cereb Cortex; 2012 Nov; 22(11):2575-86. PubMed ID: 22120491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of concurrent physical and cognitive demands on arm movement kinematics in a repetitive upper-extremity precision task.
    Srinivasan D; Mathiassen SE; Samani A; Madeleine P
    Hum Mov Sci; 2015 Aug; 42():89-99. PubMed ID: 26024788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robot-assisted motor training: assistance decreases exploration during reinforcement learning.
    Sans-Muntadas A; Duarte JE; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3516-20. PubMed ID: 25570749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Somatosensory Contribution to the Initial Stages of Human Motor Learning.
    Bernardi NF; Darainy M; Ostry DJ
    J Neurosci; 2015 Oct; 35(42):14316-26. PubMed ID: 26490869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different pedagogical approaches to motor imagery both demonstrate individualized movement patterns to achieve improved performance outcomes when learning a complex motor skill.
    Lindsay RS; Komar J; Chow JY; Larkin P; Spittle M
    PLoS One; 2023; 18(11):e0282647. PubMed ID: 38019823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of visual attention in exploration and exploitation for reward-guided adjustment tasks.
    Higashi H
    Conscious Cogn; 2024 Aug; 123():103724. PubMed ID: 38996747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reward-based learning of a redundant task.
    Tamagnone I; Casadio M; Sanguineti V
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650386. PubMed ID: 24187205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.
    Gnadt W; Grossberg S
    Neural Netw; 2008 Jun; 21(5):699-758. PubMed ID: 17996419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforcement-based processes actively regulate motor exploration along redundant solution manifolds.
    Roth AM; Calalo JA; Lokesh R; Sullivan SR; Grill S; Jeka JJ; van der Kooij K; Carter MJ; Cashaback JGA
    Proc Biol Sci; 2023 Oct; 290(2009):20231475. PubMed ID: 37848061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor Learning Enhances Use-Dependent Plasticity.
    Mawase F; Uehara S; Bastian AJ; Celnik P
    J Neurosci; 2017 Mar; 37(10):2673-2685. PubMed ID: 28143961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward natural grasping with a tool: effects of practice and required accuracy on the kinematics of tool-use grasping.
    Itaguchi Y
    J Neurophysiol; 2020 May; 123(5):2024-2036. PubMed ID: 32319844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laparoscopic Motor Learning and Workspace Exploration.
    White AD; Mushtaq F; Giles O; Wood ML; Mole C; Culmer PR; Wilkie RM; Mon-Williams M; Lodge JPA
    J Surg Educ; 2016; 73(6):992-998. PubMed ID: 27321983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in the amplitude and burst rate of beta oscillations impair reward-dependent motor learning in anxiety.
    Sporn S; Hein T; Herrojo Ruiz M
    Elife; 2020 May; 9():. PubMed ID: 32423530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of an expert model induces a skilled movement coordination pattern in a single session of intermittent practice.
    Friedman J; Korman M
    Sci Rep; 2019 Mar; 9(1):4609. PubMed ID: 30872661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.