BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 34936552)

  • 1. The induction of pyrenoid synthesis by hyperoxia and its implications for the natural diversity of photosynthetic responses in
    Neofotis P; Temple J; Tessmer OL; Bibik J; Norris N; Pollner E; Lucker B; Weraduwage SM; Withrow A; Sears B; Mogos G; Frame M; Hall D; Weissman J; Kramer DM
    Elife; 2021 Dec; 10():. PubMed ID: 34936552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrenoid loss impairs carbon-concentrating mechanism induction and alters primary metabolism in Chlamydomonas reinhardtii.
    Mitchell MC; Metodieva G; Metodiev MV; Griffiths H; Meyer MT
    J Exp Bot; 2017 Jun; 68(14):3891-3902. PubMed ID: 28520898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrenoid loss in Chlamydomonas reinhardtii causes limitations in CO2 supply, but not thylakoid operating efficiency.
    Caspari OD; Meyer MT; Tolleter D; Wittkopp TM; Cunniffe NJ; Lawson T; Grossman AR; Griffiths H
    J Exp Bot; 2017 Jun; 68(14):3903-3913. PubMed ID: 28911055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrenoid: Organelle with efficient CO
    An Y; Wang D; Du J; Wang X; Xiao J
    J Plant Physiol; 2023 Aug; 287():154044. PubMed ID: 37392525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presence of the CO2-concentrating mechanism in some species of the pyrenoid-less free-living algal genus Chloromonas (Volvocales, Chlorophyta).
    Morita E; Abe T; Tsuzuki M; Fujiwara S; Sato N; Hirata A; Sonoike K; Nozaki H
    Planta; 1998 Mar; 204(3):269-76. PubMed ID: 9530871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of microcompartmentation on flux distribution and metabolic pools in
    Küken A; Sommer F; Yaneva-Roder L; Mackinder LC; Höhne M; Geimer S; Jonikas MC; Schroda M; Stitt M; Nikoloski Z; Mettler-Altmann T
    Elife; 2018 Oct; 7():. PubMed ID: 30306890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplast-mediated regulation of CO2-concentrating mechanism by Ca2+-binding protein CAS in the green alga Chlamydomonas reinhardtii.
    Wang L; Yamano T; Takane S; Niikawa Y; Toyokawa C; Ozawa SI; Tokutsu R; Takahashi Y; Minagawa J; Kanesaki Y; Yoshikawa H; Fukuzawa H
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12586-12591. PubMed ID: 27791081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen overload.
    Foerster B
    Elife; 2021 Dec; 10():. PubMed ID: 34936551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rubisco and carbon-concentrating mechanism co-evolution across chlorophyte and streptophyte green algae.
    Goudet MMM; Orr DJ; Melkonian M; Müller KH; Meyer MT; Carmo-Silva E; Griffiths H
    New Phytol; 2020 Aug; 227(3):810-823. PubMed ID: 32249430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light and low-CO2-dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii.
    Yamano T; Tsujikawa T; Hatano K; Ozawa S; Takahashi Y; Fukuzawa H
    Plant Cell Physiol; 2010 Sep; 51(9):1453-68. PubMed ID: 20660228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New horizons for building pyrenoid-based CO2-concentrating mechanisms in plants to improve yields.
    Adler L; Díaz-Ramos A; Mao Y; Pukacz KR; Fei C; McCormick AJ
    Plant Physiol; 2022 Oct; 190(3):1609-1627. PubMed ID: 35961043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rubisco small-subunit α-helices control pyrenoid formation in Chlamydomonas.
    Meyer MT; Genkov T; Skepper JN; Jouhet J; Mitchell MC; Spreitzer RJ; Griffiths H
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19474-9. PubMed ID: 23112177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Chlamydomonas CO
    Mackinder LCM
    New Phytol; 2018 Jan; 217(1):54-61. PubMed ID: 28833179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability.
    Fukuzawa H; Miura K; Ishizaki K; Kucho KI; Saito T; Kohinata T; Ohyama K
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5347-52. PubMed ID: 11287669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pyrenoid-localized protein SAGA1 is necessary for Ca
    Shimamura D; Yamano T; Niikawa Y; Hu D; Fukuzawa H
    Photosynth Res; 2023 May; 156(2):181-192. PubMed ID: 36656499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of BST4 in the pyrenoid of
    Adler L; Lau CS; Shaikh KM; van Maldegem KA; Payne-Dwyer AL; Lefoulon C; Girr P; Atkinson N; Barrett J; Emrich-Mills TZ; Dukic E; Blatt MR; Leake MC; Peltier G; Spetea C; Burlacot A; McCormick AJ; Mackinder LCM; Walker CE
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pyrenoid: the eukaryotic CO2-concentrating organelle.
    He S; Crans VL; Jonikas MC
    Plant Cell; 2023 Sep; 35(9):3236-3259. PubMed ID: 37279536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii.
    Zhan Y; Marchand CH; Maes A; Mauries A; Sun Y; Dhaliwal JS; Uniacke J; Arragain S; Jiang H; Gold ND; Martin VJJ; Lemaire SD; Zerges W
    PLoS One; 2018; 13(2):e0185039. PubMed ID: 29481573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and functional role of the carbonic anhydrase Cah3 in thylakoid membranes of pyrenoid of Chlamydomonas reinhardtii.
    Sinetova MA; Kupriyanova EV; Markelova AG; Allakhverdiev SI; Pronina NA
    Biochim Biophys Acta; 2012 Aug; 1817(8):1248-55. PubMed ID: 22709623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial carbonic anhydrases are needed for optimal photosynthesis at low CO2 levels in Chlamydomonas.
    Rai AK; Chen T; Moroney JV
    Plant Physiol; 2021 Nov; 187(3):1387-1398. PubMed ID: 34618049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.