BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34936559)

  • 1. Adversary Agnostic Robust Deep Reinforcement Learning.
    Qu X; Gupta A; Ong YS; Sun Z
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):6146-6157. PubMed ID: 34936559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Certifiable Robustness to Adversarial State Uncertainty in Deep Reinforcement Learning.
    Everett M; Lutjens B; How JP
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4184-4198. PubMed ID: 33587714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving efficient interpretability of reinforcement learning via policy distillation and selective input gradient regularization.
    Xing J; Nagata T; Zou X; Neftci E; Krichmar JL
    Neural Netw; 2023 Apr; 161():228-241. PubMed ID: 36774862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implicit adversarial data augmentation and robustness with Noise-based Learning.
    Panda P; Roy K
    Neural Netw; 2021 Sep; 141():120-132. PubMed ID: 33894652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stylized Adversarial Defense.
    Naseer M; Khan S; Hayat M; Khan FS; Porikli F
    IEEE Trans Pattern Anal Mach Intell; 2023 May; 45(5):6403-6414. PubMed ID: 36121953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frame-Correlation Transfers Trigger Economical Attacks on Deep Reinforcement Learning Policies.
    Qu X; Ong YS; Gupta A
    IEEE Trans Cybern; 2022 Aug; 52(8):7577-7590. PubMed ID: 33417576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adversarial Robustness with Partial Isometry.
    Shi-Garrier L; Bouaynaya NC; Delahaye D
    Entropy (Basel); 2024 Jan; 26(2):. PubMed ID: 38392358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RAP Vol: Robust Adversary Populations With Volume Diversity Measure.
    Yang J; Zhang J
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; PP():. PubMed ID: 37788186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adversarial Robustness of Deep Reinforcement Learning Based Dynamic Recommender Systems.
    Wang S; Cao Y; Chen X; Yao L; Wang X; Sheng QZ
    Front Big Data; 2022; 5():822783. PubMed ID: 35592793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitigating Accuracy-Robustness Trade-Off Via Balanced Multi-Teacher Adversarial Distillation.
    Zhao S; Wang X; Wei X
    IEEE Trans Pattern Anal Mach Intell; 2024 Jun; PP():. PubMed ID: 38889035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Robust Mean-Field Actor-Critic Reinforcement Learning Against Adversarial Perturbations on Agent States.
    Zhou Z; Liu G; Zhou M
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; PP():. PubMed ID: 37276092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Between-Class Adversarial Training for Improving Adversarial Robustness of Image Classification.
    Wang D; Jin W; Wu Y
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward Intrinsic Adversarial Robustness Through Probabilistic Training.
    Dong J; Yang L; Wang Y; Xie X; Lai J
    IEEE Trans Image Process; 2023; 32():3862-3872. PubMed ID: 37428673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adversarial Robustness Via Fisher-Rao Regularization.
    Picot M; Messina F; Boudiaf M; Labeau F; Ayed IB; Piantanida P
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):2698-2710. PubMed ID: 35552150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attention-based investigation and solution to the trade-off issue of adversarial training.
    Shao C; Li W; Huo J; Feng Z; Gao Y
    Neural Netw; 2024 Jun; 174():106224. PubMed ID: 38479186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. STACoRe: Spatio-temporal and action-based contrastive representations for reinforcement learning in Atari.
    Lee YJ; Kim J; Kwak M; Park YJ; Kim SB
    Neural Netw; 2023 Mar; 160():1-11. PubMed ID: 36587439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Playing Atari with few neurons: Improving the efficacy of reinforcement learning by decoupling feature extraction and decision making.
    Cuccu G; Togelius J; Cudré-Mauroux P
    Auton Agent Multi Agent Syst; 2021; 35(2):17. PubMed ID: 34720684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpolated Adversarial Training: Achieving robust neural networks without sacrificing too much accuracy.
    Lamb A; Verma V; Kawaguchi K; Matyasko A; Khosla S; Kannala J; Bengio Y
    Neural Netw; 2022 Oct; 154():218-233. PubMed ID: 35930854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust Multiobjective Reinforcement Learning Considering Environmental Uncertainties.
    He X; Hao J; Chen X; Wang J; Ji X; Lv C
    IEEE Trans Neural Netw Learn Syst; 2024 May; PP():. PubMed ID: 38781066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Reinforcement Learning With Quantum-Inspired Experience Replay.
    Wei Q; Ma H; Chen C; Dong D
    IEEE Trans Cybern; 2022 Sep; 52(9):9326-9338. PubMed ID: 33600343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.