BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 34936695)

  • 1. Molecular and cellular mechanisms that regulate human erythropoiesis.
    Caulier AL; Sankaran VG
    Blood; 2022 Apr; 139(16):2450-2459. PubMed ID: 34936695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Systems Approach Identifies Essential FOXO3 Functions at Key Steps of Terminal Erythropoiesis.
    Liang R; Campreciós G; Kou Y; McGrath K; Nowak R; Catherman S; Bigarella CL; Rimmelé P; Zhang X; Gnanapragasam MN; Bieker JJ; Papatsenko D; Ma'ayan A; Bresnick E; Fowler V; Palis J; Ghaffari S
    PLoS Genet; 2015 Oct; 11(10):e1005526. PubMed ID: 26452208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythropoiesis: model systems, molecular regulators, and developmental programs.
    Tsiftsoglou AS; Vizirianakis IS; Strouboulis J
    IUBMB Life; 2009 Aug; 61(8):800-30. PubMed ID: 19621348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PI3k/AKT signaling pathway: Erythropoiesis and beyond.
    Jafari M; Ghadami E; Dadkhah T; Akhavan-Niaki H
    J Cell Physiol; 2019 Mar; 234(3):2373-2385. PubMed ID: 30192008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in understanding erythropoiesis: evolving perspectives.
    Nandakumar SK; Ulirsch JC; Sankaran VG
    Br J Haematol; 2016 Apr; 173(2):206-18. PubMed ID: 26846448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using the Zebrafish as a Genetic Model to Study Erythropoiesis.
    Zhang Y; Chen M; Chen C
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 14q32 and let-7 microRNAs regulate transcriptional networks in fetal and adult human erythroblasts.
    Lessard S; Beaudoin M; Orkin SH; Bauer DE; Lettre G
    Hum Mol Genet; 2018 Apr; 27(8):1411-1420. PubMed ID: 29432581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Overview of Different Strategies to Recreate the Physiological Environment in Experimental Erythropoiesis.
    Deleschaux C; Moras M; Lefevre SD; Ostuni MA
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32722249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of human hemoglobin switching by LIN28B-mediated regulation of BCL11A translation.
    Basak A; Munschauer M; Lareau CA; Montbleau KE; Ulirsch JC; Hartigan CR; Schenone M; Lian J; Wang Y; Huang Y; Wu X; Gehrke L; Rice CM; An X; Christou HA; Mohandas N; Carr SA; Chen JJ; Orkin SH; Lander ES; Sankaran VG
    Nat Genet; 2020 Feb; 52(2):138-145. PubMed ID: 31959994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Macrophages in Sickle Cell Disease Erythrophagocytosis and Erythropoiesis.
    Sesti-Costa R; Costa FF; Conran N
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Insights into the Oxygen-Sensing Pathway and Erythropoietin Expression Regulation in Erythropoiesis.
    Tomc J; Debeljak N
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34209205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Claudin 13, a member of the claudin family regulated in mouse stress induced erythropoiesis.
    Thompson PD; Tipney H; Brass A; Noyes H; Kemp S; Naessens J; Tassabehji M
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20844758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ineffective erythropoiesis in sickle cell disease: new insights and future implications.
    El Nemer W; Godard A; El Hoss S
    Curr Opin Hematol; 2021 May; 28(3):171-176. PubMed ID: 33631786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythropoiesis: insights into pathophysiology and treatments in 2017.
    Zivot A; Lipton JM; Narla A; Blanc L
    Mol Med; 2018 Mar; 24(1):11. PubMed ID: 30134792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxic regulation of erythropoiesis and iron metabolism.
    Haase VH
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F1-13. PubMed ID: 20444740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic regulation of erythrocyte development and disorders.
    Lyu J; Ni M; Weiss MJ; Xu J
    Exp Hematol; 2024 Mar; 131():104153. PubMed ID: 38237718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic control of erythropoiesis.
    Tumburu L; Thein SL
    Curr Opin Hematol; 2017 May; 24(3):173-182. PubMed ID: 28212192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis.
    Lin KH; Ho YH; Chiang JC; Li MW; Lin SH; Chen WM; Chiang CL; Lin YN; Yang YJ; Chen CN; Lu J; Huang CJ; Tigyi G; Yao CL; Lee H
    Sci Rep; 2016 May; 6():27050. PubMed ID: 27244685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. zmiz1a zebrafish mutants have defective erythropoiesis, altered expression of autophagy genes, and a deficient response to vitamin D.
    Castillo-Castellanos F; Ramírez L; Lomelí H
    Life Sci; 2021 Nov; 284():119900. PubMed ID: 34453946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythropoietin gene expression: developmental-stage specificity, cell-type specificity, and hypoxia inducibility.
    Suzuki N
    Tohoku J Exp Med; 2015 Mar; 235(3):233-40. PubMed ID: 25786542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.