BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34936840)

  • 1. Evidence for Enzymatic Backbone Methylation of the Main Membrane Lipids in the Archaeon Methanomassiliicoccus luminyensis.
    Coffinet S; Mühlena L; Lipp JS; Weil M; Neubauer C; Urich T; Hinrichs KU
    Appl Environ Microbiol; 2022 Feb; 88(4):e0215421. PubMed ID: 34936840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusual Butane- and Pentanetriol-Based Tetraether Lipids in Methanomassiliicoccus luminyensis, a Representative of the Seventh Order of Methanogens.
    Becker KW; Elling FJ; Yoshinaga MY; Söllinger A; Urich T; Hinrichs KU
    Appl Environ Microbiol; 2016 Aug; 82(15):4505-4516. PubMed ID: 27208108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of unusual butanetriol dialkyl glycerol tetraether and pentanetriol dialkyl glycerol tetraether lipids in marine sediments.
    Zhu C; Meador TB; Dummann W; Hinrichs KU
    Rapid Commun Mass Spectrom; 2014 Feb; 28(4):332-8. PubMed ID: 24395500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing production of the ubiquitous archaeal diglycosyl tetraether lipids in marine subsurface sediment using intramolecular stable isotope probing.
    Lin YS; Lipp JS; Elvert M; Holler T; Hinrichs KU
    Environ Microbiol; 2013 May; 15(5):1634-46. PubMed ID: 23033882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids.
    Zeng Z; Chen H; Yang H; Chen Y; Yang W; Feng X; Pei H; Welander PV
    Nat Commun; 2022 Mar; 13(1):1545. PubMed ID: 35318330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mode of carbon and energy metabolism shifts lipid composition in the thermoacidophile
    Rhim JH; Zhou A; Amenabar MJ; Boyer GM; Elling FJ; Weber Y; Pearson A; Boyd ES; Leavitt WD
    Appl Environ Microbiol; 2024 Feb; 90(2):e0136923. PubMed ID: 38236067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetraether archaeal lipids promote long-term survival in extreme conditions.
    Liman GLS; Garcia AA; Fluke KA; Anderson HR; Davidson SC; Welander PV; Santangelo TJ
    Mol Microbiol; 2024 May; 121(5):882-894. PubMed ID: 38372181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and significance of unsaturated archaeal tetraether lipids in marine sediments.
    Zhu C; Yoshinaga MY; Peters CA; Liu XL; Elvert M; Hinrichs KU
    Rapid Commun Mass Spectrom; 2014 May; 28(10):1144-52. PubMed ID: 24711277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calditol-linked membrane lipids are required for acid tolerance in
    Zeng Z; Liu XL; Wei JH; Summons RE; Welander PV
    Proc Natl Acad Sci U S A; 2018 Dec; 115(51):12932-12937. PubMed ID: 30518563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GDGT cyclization proteins identify the dominant archaeal sources of tetraether lipids in the ocean.
    Zeng Z; Liu XL; Farley KR; Wei JH; Metcalf WW; Summons RE; Welander PV
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22505-22511. PubMed ID: 31591189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea.
    Zhu C; Wakeham SG; Elling FJ; Basse A; Mollenhauer G; Versteegh GJ; Könneke M; Hinrichs KU
    Environ Microbiol; 2016 Dec; 18(12):4324-4336. PubMed ID: 26950522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combined lipidomic and 16S rRNA gene amplicon sequencing approach reveals archaeal sources of intact polar lipids in the stratified Black Sea water column.
    Sollai M; Villanueva L; Hopmans EC; Reichart GJ; Sinninghe Damsté JS
    Geobiology; 2019 Jan; 17(1):91-109. PubMed ID: 30281902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel glycerol dialkanol triols in sediments: transformation products of glycerol dibiphytanyl glycerol tetraether lipids or biosynthetic intermediates?
    Knappy CS; Keely BJ
    Chem Commun (Camb); 2012 Jan; 48(6):841-3. PubMed ID: 22117226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The absence of intact polar lipid-derived GDGTs in marine waters dominated by Marine Group II: Implications for lipid biosynthesis in Archaea.
    Besseling MA; Hopmans EC; Bale NJ; Schouten S; Damsté JSS; Villanueva L
    Sci Rep; 2020 Jan; 10(1):294. PubMed ID: 31941956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetraether membrane lipids of Candidatus "Aciduliprofundum boonei", a cultivated obligate thermoacidophilic euryarchaeote from deep-sea hydrothermal vents.
    Schouten S; Baas M; Hopmans EC; Reysenbach AL; Damsté JS
    Extremophiles; 2008 Jan; 12(1):119-24. PubMed ID: 17901915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermophilic archaeon orchestrates temporal expression of GDGT ring synthases in response to temperature and acidity stress.
    Yang W; Chen H; Chen Y; Chen A; Feng X; Zhao B; Zheng F; Fang H; Zhang C; Zeng Z
    Environ Microbiol; 2023 Feb; 25(2):575-587. PubMed ID: 36495168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycerol monoalkanediol diethers: a novel series of archaeal lipids detected in hydrothermal environments.
    Bauersachs T; Schwark L
    Rapid Commun Mass Spectrom; 2016 Jan; 30(1):54-60. PubMed ID: 26661970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramolecular stable carbon isotopic analysis of archaeal glycosyl tetraether lipids.
    Lin YS; Lipp JS; Yoshinaga MY; Lin SH; Elvert M; Hinrichs KU
    Rapid Commun Mass Spectrom; 2010 Oct; 24(19):2817-26. PubMed ID: 20857440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane adaptation in the hyperthermophilic archaeon Pyrococcus furiosus relies upon a novel strategy involving glycerol monoalkyl glycerol tetraether lipids.
    Tourte M; Schaeffer P; Grossi V; Oger PM
    Environ Microbiol; 2022 Apr; 24(4):2029-2046. PubMed ID: 35106897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive molecular-isotopic characterization of archaeal lipids in the Black Sea water column and underlying sediments.
    Zhu QZ; Elvert M; Meador TB; Schröder JM; Doeana KD; Becker KW; Elling FJ; Lipp JS; Heuer VB; Zabel M; Hinrichs KU
    Geobiology; 2024; 22(2):e12589. PubMed ID: 38465505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.