BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34936982)

  • 21. Floor-vibration VR: Mitigating Cybersickness Using Whole-body Tactile Stimuli in Highly Realistic Vehicle Driving Experiences.
    Jung S; Li R; McKee R; Whitton MC; Lindeman RW
    IEEE Trans Vis Comput Graph; 2021 May; 27(5):2669-2680. PubMed ID: 33760736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Subjective Visual Vertical test with the 3D virtual reality system: effective factors and cybersickness.
    Ardıç FN; Metin U; Gökcan BE
    Acta Otolaryngol; 2023; 143(7):570-575. PubMed ID: 37493360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Eye Movement Patterns Reflecting Cybersickness: Evidence from Different Experience Modes of a Virtual Reality Game.
    Nam Y; Hong U; Chung H; Noh SR
    Cyberpsychol Behav Soc Netw; 2022 Feb; 25(2):135-139. PubMed ID: 34962156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validation of the Virtual Reality Neuroscience Questionnaire: Maximum Duration of Immersive Virtual Reality Sessions Without the Presence of Pertinent Adverse Symptomatology.
    Kourtesis P; Collina S; Doumas LAA; MacPherson SE
    Front Hum Neurosci; 2019; 13():417. PubMed ID: 31849627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Cybersickness Caused by Head-Mounted Display-Based Virtual Reality on Physiological Responses: Cross-sectional Study.
    Kim YS; Won J; Jang SW; Ko J
    JMIR Serious Games; 2022 Oct; 10(4):e37938. PubMed ID: 36251360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined pitch and roll and cybersickness in a virtual environment.
    Bonato F; Bubka A; Palmisano S
    Aviat Space Environ Med; 2009 Nov; 80(11):941-5. PubMed ID: 19911517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of economically friendly acustimulation approach against cybersickness in video-watching tasks using consumer virtual reality devices.
    Liu R; Zhuang C; Yang R; Ma L
    Appl Ergon; 2020 Jan; 82():102946. PubMed ID: 31487560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studying the Effect of Display Type and Viewing Perspective on User Experience in Virtual Reality Exergames.
    Xu W; Liang HN; Zhang Z; Baghaei N
    Games Health J; 2020 Dec; 9(6):405-414. PubMed ID: 32074463
    [No Abstract]   [Full Text] [Related]  

  • 29. Omnidirectional Galvanic Vestibular Stimulation in Virtual Reality.
    Groth C; Tauscher JP; Heesen N; Hattenbach M; Castillo S; Magnor M
    IEEE Trans Vis Comput Graph; 2022 May; 28(5):2234-2244. PubMed ID: 35167472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Profiling of cybersickness and balance disturbance induced by virtual ship motion immersion combined with galvanic vestibular stimulation.
    Qi RR; Xiao SF; Pan LL; Mao YQ; Su Y; Wang LJ; Cai YL
    Appl Ergon; 2021 Apr; 92():103312. PubMed ID: 33338973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of binocular disparity and active motion parallax in cybersickness.
    Eftekharifar S; Thaler A; Bebko AO; Troje NF
    Exp Brain Res; 2021 Aug; 239(8):2649-2660. PubMed ID: 34216232
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differences in virtual and physical head orientation predict sickness during active head-mounted display-based virtual reality.
    Palmisano S; Allison RS; Teixeira J; Kim J
    Virtual Real; 2023; 27(2):1293-1313. PubMed ID: 36567954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immersive Virtual Reality-Based Methods for Assessing Executive Functioning: Systematic Review.
    Kirkham R; Kooijman L; Albertella L; Myles D; Yücel M; Rotaru K
    JMIR Serious Games; 2024 Feb; 12():e50282. PubMed ID: 38407958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Factors Associated With Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis.
    Saredakis D; Szpak A; Birckhead B; Keage HAD; Rizzo A; Loetscher T
    Front Hum Neurosci; 2020; 14():96. PubMed ID: 32300295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brain activity during cybersickness: a scoping review.
    Chang E; Billinghurst M; Yoo B
    Virtual Real; 2023 Apr; ():1-25. PubMed ID: 37360812
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimating the sensorimotor components of cybersickness.
    Weech S; Varghese JP; Barnett-Cowan M
    J Neurophysiol; 2018 Nov; 120(5):2201-2217. PubMed ID: 30044672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of cybersickness in virtual nursing simulation: a German longitudinal study.
    Biniok M; Forbrig TA; Gellert P; Gräske J
    BMC Nurs; 2024 Mar; 23(1):187. PubMed ID: 38509512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cybersickness and postural stability of first time VR users playing VR videogames.
    da Silva Marinho A; Terton U; Jones CM
    Appl Ergon; 2022 May; 101():103698. PubMed ID: 35151982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immersive Virtual Reality during Robot-Assisted Gait Training: Validation of a New Device in Stroke Rehabilitation.
    Morizio C; Compagnat M; Boujut A; Labbani-Igbida O; Billot M; Perrochon A
    Medicina (Kaunas); 2022 Dec; 58(12):. PubMed ID: 36557007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Virtual Reality as a Therapy Tool for Walking Activities in Pediatric Neurorehabilitation: Usability and User Experience Evaluation.
    Ammann-Reiffer C; Kläy A; Keller U
    JMIR Serious Games; 2022 Jul; 10(3):e38509. PubMed ID: 35834316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.