These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 34937000)
21. Influence of cross-linked hyaluronic acid hydrogels on neurite outgrowth and recovery from spinal cord injury. Horn EM; Beaumont M; Shu XZ; Harvey A; Prestwich GD; Horn KM; Gibson AR; Preul MC; Panitch A J Neurosurg Spine; 2007 Feb; 6(2):133-40. PubMed ID: 17330580 [TBL] [Abstract][Full Text] [Related]
22. A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury. Shen H; Xu B; Yang C; Xue W; You Z; Wu X; Ma D; Shao D; Leong K; Dai J Biomaterials; 2022 Jan; 280():121279. PubMed ID: 34847433 [TBL] [Abstract][Full Text] [Related]
23. Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor. Park J; Lim E; Back S; Na H; Park Y; Sun K J Biomed Mater Res A; 2010 Jun; 93(3):1091-9. PubMed ID: 19768787 [TBL] [Abstract][Full Text] [Related]
24. A hybrid composite system of biphasic calcium phosphate granules loaded with hyaluronic acid-gelatin hydrogel for bone regeneration. Faruq O; Kim B; Padalhin AR; Lee GH; Lee BT J Biomater Appl; 2017 Oct; 32(4):433-445. PubMed ID: 28944711 [TBL] [Abstract][Full Text] [Related]
25. Inhibited astrocytic differentiation in neural stem cell-laden 3D bioprinted conductive composite hydrogel scaffolds for repair of spinal cord injury. Song S; Li Y; Huang J; Cheng S; Zhang Z Biomater Adv; 2023 May; 148():213385. PubMed ID: 36934714 [TBL] [Abstract][Full Text] [Related]
26. Implantation of a functional TEMPO-hydrogel induces recovery from rat spinal cord transection through promoting nerve regeneration and protecting bladder tissue. Zhang Y; Li L; Mu J; Chen J; Feng S; Gao J Biomater Sci; 2020 Mar; 8(6):1695-1701. PubMed ID: 31989134 [TBL] [Abstract][Full Text] [Related]
28. In situ injectable hyaluronic acid/gelatin hydrogel for hemorrhage control. Luo JW; Liu C; Wu JH; Lin LX; Fan HM; Zhao DH; Zhuang YQ; Sun YL Mater Sci Eng C Mater Biol Appl; 2019 May; 98():628-634. PubMed ID: 30813066 [TBL] [Abstract][Full Text] [Related]
29. Enhanced spinal cord regeneration by gelatin/alginate hydrogel scaffolds containing human endometrial stem cells and curcumin-loaded PLGA nanoparticles in rat. Ai A; Hasanzadeh E; Safshekan F; Astaneh ME; SalehiNamini M; Naser R; Madani F; Shirian S; Jahromi HK; Ai J Life Sci; 2023 Oct; 330():122035. PubMed ID: 37611693 [TBL] [Abstract][Full Text] [Related]
30. Injectable Hydrogel with Slow Degradability Composed of Gelatin and Hyaluronic Acid Cross-Linked by Schiff's Base Formation. Hozumi T; Kageyama T; Ohta S; Fukuda J; Ito T Biomacromolecules; 2018 Feb; 19(2):288-297. PubMed ID: 29284268 [TBL] [Abstract][Full Text] [Related]
31. A decellularized spinal cord extracellular matrix-gel/GelMA hydrogel three-dimensional composite scaffold promotes recovery from spinal cord injury He W; Zhang X; Li X; Ju D; Mao T; Lu Y; Gu Y; Qi L; Wang Q; Wu Q; Dong C J Mater Chem B; 2022 Aug; 10(30):5753-5764. PubMed ID: 35838078 [TBL] [Abstract][Full Text] [Related]
32. Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels. Camci-Unal G; Cuttica D; Annabi N; Demarchi D; Khademhosseini A Biomacromolecules; 2013 Apr; 14(4):1085-92. PubMed ID: 23419055 [TBL] [Abstract][Full Text] [Related]
33. Promoting tissue repair using deferoxamine nanoparticles loaded biomimetic gelatin/HA composite hydrogel. Li J; Lu X; Weng M; Wang Y; Tang J; Xu Q; Zhang L; Bai J Biomed Mater; 2024 May; 19(4):. PubMed ID: 38697149 [TBL] [Abstract][Full Text] [Related]
34. The hetero-transplantation of human bone marrow stromal cells carried by hydrogel unexpectedly demonstrates a significant role in the functional recovery in the injured spinal cord of rats. Raynald ; Li Y; Yu H; Huang H; Guo M; Hua R; Jiang F; Zhang K; Li H; Wang F; Li L; Cui F; An Y Brain Res; 2016 Mar; 1634():21-33. PubMed ID: 26523673 [TBL] [Abstract][Full Text] [Related]
35. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/β-catenin signaling for spinal cord injury repair. Li X; Fan C; Xiao Z; Zhao Y; Zhang H; Sun J; Zhuang Y; Wu X; Shi J; Chen Y; Dai J Biomaterials; 2018 Nov; 183():114-127. PubMed ID: 30153562 [TBL] [Abstract][Full Text] [Related]
36. Restoring electrical connection using a conductive biomaterial provides a new therapeutic strategy for rats with spinal cord injury. Shu B; Sun X; Liu R; Jiang F; Yu H; Xu N; An Y Neurosci Lett; 2019 Jan; 692():33-40. PubMed ID: 30367954 [TBL] [Abstract][Full Text] [Related]
37. Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury. Li G; Che MT; Zhang K; Qin LN; Zhang YT; Chen RQ; Rong LM; Liu S; Ding Y; Shen HY; Long SM; Wu JL; Ling EA; Zeng YS Biomaterials; 2016 Mar; 83():233-48. PubMed ID: 26774562 [TBL] [Abstract][Full Text] [Related]
38. Sorouri F; Hosseini P; Sharifzadeh M; Kiani S; Khoobi M ACS Appl Mater Interfaces; 2023 Sep; 15(36):42251-42270. PubMed ID: 37647536 [TBL] [Abstract][Full Text] [Related]
39. Promoting 3D neuronal differentiation in hydrogel for spinal cord regeneration. Zhou P; Xu P; Guan J; Zhang C; Chang J; Yang F; Xiao H; Sun H; Zhang Z; Wang M; Hu J; Mao Y Colloids Surf B Biointerfaces; 2020 Oct; 194():111214. PubMed ID: 32599502 [TBL] [Abstract][Full Text] [Related]
40. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats. Chen C; Zhao ML; Zhang RK; Lu G; Zhao CY; Fu F; Sun HT; Zhang S; Tu Y; Li XH J Biomed Mater Res A; 2017 May; 105(5):1324-1332. PubMed ID: 28120511 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]