These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 34937009)

  • 1. Blood compatibility evaluations of two-dimensional Ti
    Yu H; Wan Y; Zhang G; Huang X; Lin L; Zhou C; Jiao Y; Li H
    Biomed Mater; 2022 Jan; 17(2):. PubMed ID: 34937009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood Compatibility Evaluations of Fluorescent Carbon Dots.
    Li S; Guo Z; Zhang Y; Xue W; Liu Z
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19153-62. PubMed ID: 26269934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemocompatibility studies on a degradable polar hydrophobic ionic polyurethane (D-PHI).
    Brockman KS; Kizhakkedathu JN; Santerre JP
    Acta Biomater; 2017 Jan; 48():368-377. PubMed ID: 27818307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Polylysine on Blood Clotting, and Red Blood Cell Morphology, Aggregation and Hemolysis.
    Zhang W; Liu F
    J Nanosci Nanotechnol; 2017 Jan; 17(1):251-55. PubMed ID: 29620337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood compatibility evaluations of CaCO
    Lin J; Huang L; Xiang R; Ou H; Li X; Chen A; Liu Z
    Biomed Mater; 2021 Aug; 16(5):. PubMed ID: 34340221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood compatibility evaluations of poly(ethylene glycol)-poly(lactic acid) copolymers.
    Li C; Ma C; Zhang Y; Liu Z; Xue W
    J Biomater Appl; 2016 May; 30(10):1485-93. PubMed ID: 26980550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of halloysite nanotubes on the structure and function of important multiple blood components.
    Wu K; Feng R; Jiao Y; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():72-78. PubMed ID: 28415521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of graphene oxide on the structure and function of important multiple blood components by a dose-dependent pattern.
    Feng R; Yu Y; Shen C; Jiao Y; Zhou C
    J Biomed Mater Res A; 2015 Jun; 103(6):2006-14. PubMed ID: 25257186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemocompatibility evaluation in vitro of methoxy polyethyleneglycol-polycaprolactone copolymer solutions.
    Hu Q; Zhang Y; Wang C; Xu J; Wu J; Liu Z; Xue W
    J Biomed Mater Res A; 2016 Mar; 104(3):802-812. PubMed ID: 26481428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemocompatibility assessment of poly(2-dimethylamino ethylmethacrylate) (PDMAEMA)-based polymers.
    Cerda-Cristerna BI; Flores H; Pozos-Guillén A; Pérez E; Sevrin C; Grandfils C
    J Control Release; 2011 Aug; 153(3):269-77. PubMed ID: 21550368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular biosafety of commercial hydroxyapatite particles: discrepancy between blood compatibility assays and endothelial cell behavior.
    Santos C; Turiel S; Sousa Gomes P; Costa E; Santos-Silva A; Quadros P; Duarte J; Battistuzzo S; Fernandes MH
    J Nanobiotechnology; 2018 Mar; 16(1):27. PubMed ID: 29566760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on the hemocompatibility of dendronized chitosan derivatives in red blood cells.
    Zhou Y; Li J; Lu F; Deng J; Zhang J; Fang P; Peng X; Zhou SF
    Drug Des Devel Ther; 2015; 9():2635-45. PubMed ID: 25999697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood compatibility of polyamidoamine dendrimers and erythrocyte protection.
    Han MH; Chen J; Wang J; Chen SL; Wang XT
    J Biomed Nanotechnol; 2010 Feb; 6(1):82-92. PubMed ID: 20499836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility assessment of cyclic olefin copolymers: Impact of two additives on cytotoxicity, oxidative stress, inflammatory reactions, and hemocompatibility.
    Bernard M; Jubeli E; Bakar J; Tortolano L; Saunier J; Yagoubi N
    J Biomed Mater Res A; 2017 Dec; 105(12):3333-3349. PubMed ID: 28875577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Evaluation of Blood Compatibility of Silver Nanoparticles.
    Huang H; Lai W; Cui M; Liang L; Lin Y; Fang Q; Liu Y; Xie L
    Sci Rep; 2016 May; 6():25518. PubMed ID: 27145858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the Blood Compatibility of Sulfated Organosolv Lignins Derived from Abies sibirica and Larix sibirica Wood Pulp.
    Drozd NN; Kuznetsova SA; Malyar YN; Vasilyeva NY; Kuznetsov BN
    Bull Exp Biol Med; 2020 Oct; 169(6):815-820. PubMed ID: 33123918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short fluorocarbon chains containing hydrophobic nanofibrous membranes with improved hemocompatibility, anticoagulation and anti-fouling performance.
    Wang Y; Liu Y; Liu M; Qian W; Zhou D; Liu T; Luo G; Xing M
    Colloids Surf B Biointerfaces; 2019 Aug; 180():49-57. PubMed ID: 31028964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protective effect of PEGylation against poly(amidoamine) dendrimer-induced hemolysis of human red blood cells.
    Wang W; Xiong W; Zhu Y; Xu H; Yang X
    J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):59-64. PubMed ID: 20186802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of tannic acid on blood components and functions.
    Deng L; Qi Y; Liu Z; Xi Y; Xue W
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110505. PubMed ID: 31546221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Cremophor EL/ethanol/oleinic acid/water microemulsion on human blood components and coagulation function.
    Zhang Y; Zhao H; Wang X; Xiao H; Guan Y
    Colloids Surf B Biointerfaces; 2019 Aug; 180():254-262. PubMed ID: 31059983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.