These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34937058)

  • 1. On predicting particle capture rates in aquatic ecosystems.
    Espinosa-Gayosso A; Ghisalberti M; Shimeta J; Ivey GN
    PLoS One; 2021; 16(12):e0261400. PubMed ID: 34937058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adding ecology to particle capture models: numerical simulations of capture on a moving cylinder in crossflow.
    Krick J; Ackerman JD
    J Theor Biol; 2015 Mar; 368():13-26. PubMed ID: 25496731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-assisted measurements of suspension-feeding flow velocities.
    Du Clos KT; Jones IT; Carrier TJ; Brady DC; Jumars PA
    J Exp Biol; 2017 Jun; 220(Pt 11):2096-2107. PubMed ID: 28348044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collector Motion Affects Particle Capture in Physical Models and in Wind Pollination.
    McCombe D; Ackerman JD
    Am Nat; 2018 Jul; 192(1):81-93. PubMed ID: 29897806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hydrodynamics of contact of a marine larva, Bugula neritina, with a cylinder.
    Zilman G; Novak J; Liberzon A; Perkol-Finkel S; Benayahu Y
    J Exp Biol; 2013 Aug; 216(Pt 15):2789-97. PubMed ID: 23619416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates.
    Ziajahromi S; Kumar A; Neale PA; Leusch FDL
    Environ Pollut; 2018 May; 236():425-431. PubMed ID: 29414367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filter feeders and plankton increase particle encounter rates through flow regime control.
    Humphries S
    Proc Natl Acad Sci U S A; 2009 May; 106(19):7882-7. PubMed ID: 19416879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new angle on microscopic suspension feeders near boundaries.
    Pepper RE; Roper M; Ryu S; Matsumoto N; Nagai M; Stone HA
    Biophys J; 2013 Oct; 105(8):1796-804. PubMed ID: 24138855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microplastic retention by marine vegetated canopies: Simulations with seagrass meadows in a hydraulic flume.
    de Los Santos CB; Krång AS; Infantes E
    Environ Pollut; 2021 Jan; 269():116050. PubMed ID: 33272801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards more ecologically relevant investigations of the impacts of microplastic pollution in freshwater ecosystems.
    Ockenden A; Tremblay LA; Dikareva N; Simon KS
    Sci Total Environ; 2021 Oct; 792():148507. PubMed ID: 34465042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substance deposition assessment in obstructed pulmonary system through numerical characterization of airflow and inhaled particles attributes.
    Lalas A; Nousias S; Kikidis D; Lalos A; Arvanitis G; Sougles C; Moustakas K; Votis K; Verbanck S; Usmani O; Tzovaras D
    BMC Med Inform Decis Mak; 2017 Dec; 17(Suppl 3):173. PubMed ID: 29297393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems.
    Williamson CE; Neale PJ; Hylander S; Rose KC; Figueroa FL; Robinson SA; Häder DP; Wängberg SÅ; Worrest RC
    Photochem Photobiol Sci; 2019 Mar; 18(3):717-746. PubMed ID: 30810561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification.
    Miao L; Hou J; You G; Liu Z; Liu S; Li T; Mo Y; Guo S; Qu H
    Environ Pollut; 2019 Dec; 255(Pt 2):113300. PubMed ID: 31610513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle transport and deposition correlation with near-wall flow characteristic under inspiratory airflow in lung airways.
    Farghadan A; Poorbahrami K; Jalal S; Oakes JM; Coletti F; Arzani A
    Comput Biol Med; 2020 May; 120():103703. PubMed ID: 32217283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between seagrass complexity, hydrodynamic flow and biomixing alter food availability for associated filter-feeding organisms.
    González-Ortiz V; Egea LG; Jiménez-Ramos R; Moreno-Marín F; Pérez-Lloréns JL; Bouma TJ; Brun FG
    PLoS One; 2014; 9(8):e104949. PubMed ID: 25162510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capillary interception of floating particles by surface-piercing vegetation.
    Peruzzo P; Defina A; Nepf HM; Stocker R
    Phys Rev Lett; 2013 Oct; 111(16):164501. PubMed ID: 24182270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: Validating CFD predictions with in vitro data.
    Ahookhosh K; Saidi M; Aminfar H; Mohammadpourfard M; Hamishehkar H; Yaqoubi S
    Int J Pharm; 2020 Sep; 587():119599. PubMed ID: 32663586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.
    Vulović A; Šušteršič T; Cvijić S; Ibrić S; Filipović N
    Eur J Pharm Sci; 2018 Feb; 113():171-184. PubMed ID: 29054499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutual enhancements of CFD modeling and experimental data: a case study of 1-mum particle deposition in a branching airway model.
    Longest PW; Oldham MJ
    Inhal Toxicol; 2006 Sep; 18(10):761-71. PubMed ID: 16774865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.