These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A step in the direction of resolving the paradox of Perdew-Zunger self-interaction correction. Zope RR; Yamamoto Y; Diaz CM; Baruah T; Peralta JE; Jackson KA; Santra B; Perdew JP J Chem Phys; 2019 Dec; 151(21):214108. PubMed ID: 31822080 [TBL] [Abstract][Full Text] [Related]
5. On the origins of spontaneous spherical symmetry-breaking in open-shell atoms through polymer self-consistent field theory. LeMaitre PA; Thompson RB J Chem Phys; 2023 Feb; 158(6):064301. PubMed ID: 36792525 [TBL] [Abstract][Full Text] [Related]
6. Perdew-Zunger self-interaction correction: How wrong for uniform densities and large-Z atoms? Santra B; Perdew JP J Chem Phys; 2019 May; 150(17):174106. PubMed ID: 31067900 [TBL] [Abstract][Full Text] [Related]
7. The RPA Atomization Energy Puzzle. Ruzsinszky A; Perdew JP; Csonka GI J Chem Theory Comput; 2010 Jan; 6(1):127-34. PubMed ID: 26614325 [TBL] [Abstract][Full Text] [Related]
8. Some Fundamental Issues in Ground-State Density Functional Theory: A Guide for the Perplexed. Perdew JP; Ruzsinszky A; Constantin LA; Sun J; Csonka GI J Chem Theory Comput; 2009 Apr; 5(4):902-8. PubMed ID: 26609599 [TBL] [Abstract][Full Text] [Related]
10. Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems. Gagliardi L; Truhlar DG; Li Manni G; Carlson RK; Hoyer CE; Bao JL Acc Chem Res; 2017 Jan; 50(1):66-73. PubMed ID: 28001359 [TBL] [Abstract][Full Text] [Related]
11. Symmetry breaking and self-interaction correction in the chromium atom and dimer. Maniar R; Withanage KPK; Shahi C; Kaplan AD; Perdew JP; Pederson MR J Chem Phys; 2024 Apr; 160(14):. PubMed ID: 38587222 [TBL] [Abstract][Full Text] [Related]
12. Exploring and enhancing the accuracy of interior-scaled Perdew-Zunger self-interaction correction. Bhattarai P; Santra B; Wagle K; Yamamoto Y; Zope RR; Ruzsinszky A; Jackson KA; Perdew JP J Chem Phys; 2021 Mar; 154(9):094105. PubMed ID: 33685179 [TBL] [Abstract][Full Text] [Related]
13. Fermi-Löwdin orbital self-interaction correction using the strongly constrained and appropriately normed meta-GGA functional. Yamamoto Y; Diaz CM; Basurto L; Jackson KA; Baruah T; Zope RR J Chem Phys; 2019 Oct; 151(15):154105. PubMed ID: 31640373 [TBL] [Abstract][Full Text] [Related]
14. Study of self-interaction errors in density functional predictions of dipole polarizabilities and ionization energies of water clusters using Perdew-Zunger and locally scaled self-interaction corrected methods. Akter S; Yamamoto Y; Diaz CM; Jackson KA; Zope RR; Baruah T J Chem Phys; 2020 Oct; 153(16):164304. PubMed ID: 33138422 [TBL] [Abstract][Full Text] [Related]
15. Meta-generalized gradient approximation: explanation of a realistic nonempirical density functional. Perdew JP; Tao J; Staroverov VN; Scuseria GE J Chem Phys; 2004 Apr; 120(15):6898-911. PubMed ID: 15267588 [TBL] [Abstract][Full Text] [Related]
16. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory. Zope RR; Dunlap BI J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149 [TBL] [Abstract][Full Text] [Related]
17. Regularized Gradient Expansion for Atoms, Molecules, and Solids. Ruzsinszky A; Csonka GI; Scuseria GE J Chem Theory Comput; 2009 Apr; 5(4):763-9. PubMed ID: 26609581 [TBL] [Abstract][Full Text] [Related]
18. Second-order Kohn-Sham perturbation theory: correlation potential for atoms in a cavity. Jiang H; Engel E J Chem Phys; 2005 Dec; 123(22):224102. PubMed ID: 16375465 [TBL] [Abstract][Full Text] [Related]
19. Vertical Ionization Energies, Generalized Kohn-Sham Orbital Energies, and the Curious Case of the Copper Oxide Anions. Shahi C; Maniar R; Ning J; Csonka GI; Perdew JP; Ruzsinszky A J Phys Chem A; 2024 Oct; 128(40):8628-8634. PubMed ID: 39329455 [TBL] [Abstract][Full Text] [Related]
20. Meta-GGA Density Functional Calculations on Atoms with Spherically Symmetric Densities in the Finite Element Formalism. Lehtola S J Chem Theory Comput; 2023 May; 19(9):2502-2517. PubMed ID: 37084260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]