These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34937565)

  • 1. Injectable wireless microdevices: challenges and opportunities.
    Khalifa A; Lee S; Molnar AC; Cash S
    Bioelectron Med; 2021 Dec; 7(1):19. PubMed ID: 34937565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Wireless, Batteryless, Implantable Electronics for Real-Time, Continuous Physiological Monitoring.
    Kim H; Rigo B; Wong G; Lee YJ; Yeo WH
    Nanomicro Lett; 2023 Dec; 16(1):52. PubMed ID: 38099970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking the Migration of Injectable Microdevices in the Rodent Brain Using a 9.4T Magnetic Resonance Imaging Scanner.
    Khalifa A; Weigand-Whittier J; Farrar CT; Cash S
    Front Neurosci; 2021; 15():738589. PubMed ID: 34675768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implantable and ingestible medical devices with wireless telemetry functionalities: a review of current status and challenges.
    Kiourti A; Psathas KA; Nikita KS
    Bioelectromagnetics; 2014 Jan; 35(1):1-15. PubMed ID: 24115132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in neural dust: towards a neural interface platform.
    Neely RM; Piech DK; Santacruz SR; Maharbiz MM; Carmena JM
    Curr Opin Neurobiol; 2018 Jun; 50():64-71. PubMed ID: 29331738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatible Electrical and Optical Interfaces for Implantable Sensors and Devices.
    Wan Y; Wang C; Zhang B; Liu Y; Yang H; Liu F; Xu J; Xu S
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple method for implanting free-floating microdevices into the nervous tissue.
    Khalifa A; Eisape A; Coughlin B; Cash S
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33827069
    [No Abstract]   [Full Text] [Related]  

  • 8. Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review.
    Bocan KN; Sejdić E
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26999154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully implantable neural recording and stimulation interfaces: Peripheral nerve interface applications.
    Deshmukh A; Brown L; Barbe MF; Braverman AS; Tiwari E; Hobson L; Shunmugam S; Armitage O; Hewage E; Ruggieri MR; Morizio J
    J Neurosci Methods; 2020 Mar; 333():108562. PubMed ID: 31862376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive review of powering methods used in state-of-the-art miniaturized implantable electronic devices.
    Dinis H; Mendes PM
    Biosens Bioelectron; 2021 Jan; 172():112781. PubMed ID: 33160236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Planar Elliptical Inductor Design for Wireless Implantable Medical Devices.
    Farooq M; Amin B; Elahi A; Wijns W; Shahzad A
    Bioengineering (Basel); 2023 Jan; 10(2):. PubMed ID: 36829645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soft, wireless and subdermally implantable recording and neuromodulation tools.
    Cai L; Gutruf P
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33607646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Distributed Wireless Network of Implantable Sub-mm Cortical Microstimulators for Brain-Computer Interfaces.
    Laiwalla F; Lee J; Lee AH; Mok E; Leung V; Shellhammer S; Song YK; Larson L; Nurmikko A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6876-6879. PubMed ID: 31947420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implantable microscale neural interfaces.
    Cheung KC
    Biomed Microdevices; 2007 Dec; 9(6):923-38. PubMed ID: 17252207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Linear-Power-Regulated Wireless Power Transfer Method for Decreasing the Heat Dissipation of Fully Implantable Microsystems.
    Wang H; Zhu C; Jin W; Tang J; Wu Z; Chen K; Hong H
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Future of Neural Interfaces.
    Laiwalla F; Nurmikko A
    Adv Exp Med Biol; 2019; 1101():225-241. PubMed ID: 31729678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of Energy-Autonomous Wireless Microsensors for Biomedical Applications: Powering and Communication.
    Goodarzy F; Skafidas ES; Gambini S
    IEEE Rev Biomed Eng; 2015; 8():17-29. PubMed ID: 25137732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a sub-0.1-mm
    Shi C; Andino-Pavlovsky V; Lee SA; Costa T; Elloian J; Konofagou EE; Shepard KL
    Sci Adv; 2021 May; 7(19):. PubMed ID: 33962948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Method of Wireless Micro Energy Transmission Based on MEMS Micro Coil.
    Wang Y; Yi C; Meng F; Sun X
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power Approaches for Implantable Medical Devices.
    Ben Amar A; Kouki AB; Cao H
    Sensors (Basel); 2015 Nov; 15(11):28889-914. PubMed ID: 26580626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.