These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34938922)

  • 21. Quantitative evaluation of the antibacterial factors of ZnO nanorod arrays under dark conditions: Physical and chemical effects on Escherichia coli inactivation.
    Jeong E; Kim CU; Byun J; Lee J; Kim HE; Kim EJ; Choi KJ; Hong SW
    Sci Total Environ; 2020 Apr; 712():136574. PubMed ID: 32050388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates.
    Sun Y; Riley DJ; Ashfold MN
    J Phys Chem B; 2006 Aug; 110(31):15186-92. PubMed ID: 16884233
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced cell-wall damage mediated, antibacterial activity of core-shell ZnO@Ag heterojunction nanorods against Staphylococcus aureus and Pseudomonas aeruginosa.
    Ponnuvelu DV; Suriyaraj SP; Vijayaraghavan T; Selvakumar R; Pullithadathail B
    J Mater Sci Mater Med; 2015 Jul; 26(7):204. PubMed ID: 26152512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigations of a Statistical and Analytical Method to Find the Relationship between the Morphological and Optical Properties of ZnO Nanoflower Arrays.
    Lee CY; Wang CS; Wang FH; Liu HW; Yang CF
    ACS Omega; 2022 May; 7(20):17384-17392. PubMed ID: 35647472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polarity-Dependent Growth Rates of Selective Area Grown ZnO Nanorods by Chemical Bath Deposition.
    Cossuet T; Appert E; Thomassin JL; Consonni V
    Langmuir; 2017 Jun; 33(25):6269-6279. PubMed ID: 28556662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity.
    Agnihotri S; Bajaj G; Mukherji S; Mukherji S
    Nanoscale; 2015 Apr; 7(16):7415-29. PubMed ID: 25830178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Micro/nanostructured TiO
    Zhang R; Xu N; Liu X; Yang X; Yan H; Ma J; Feng Q; Shen Z
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):2838-2845. PubMed ID: 31307228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and Characterization of Aligned ZnO Nanorods on Porous Aluminum Oxide Template.
    Jie J; Wang G; Wang Q; Chen Y; Han X; Wang X; Hou JG
    J Phys Chem B; 2004 Aug; 108(32):11976-80. PubMed ID: 19366246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of litchi-like lignin/zinc oxide composites with enhanced antibacterial activity and their application in polyurethane films.
    Wang Y; Wang H; Li Z; Yang D; Qiu X; Liu Y; Yan M; Li Q
    J Colloid Interface Sci; 2021 Jul; 594():316-325. PubMed ID: 33773384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-temperature solution growth of ZnO nanotube arrays.
    Chae KW; Zhang Q; Kim JS; Jeong YH; Cao G
    Beilstein J Nanotechnol; 2010; 1():128-34. PubMed ID: 21977402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shell Layer Thickness-Dependent Photocatalytic Activity of Sputtering Synthesized Hexagonally Structured ZnO-ZnS Composite Nanorods.
    Liang YC; Lo YR; Wang CC; Xu NC
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29316671
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective patterning of ZnO nanorods on silicon substrates using nanoimprint lithography.
    Jung MH; Lee H
    Nanoscale Res Lett; 2011 Feb; 6(1):159. PubMed ID: 21711665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antibacterial Nanorods Made of Carbon Quantum Dots-ZnO Under Visible Light Irradiation.
    Kuang W; Zhong Q; Ye X; Yan Y; Yang Y; Zhang J; Huang L; Tan S; Shi Q
    J Nanosci Nanotechnol; 2019 Jul; 19(7):3982-3990. PubMed ID: 30764959
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zinkicide Is a ZnO-Based Nanoformulation with Bactericidal Activity against Liberibacter crescens in Batch Cultures and in Microfluidic Chambers Simulating Plant Vascular Systems.
    Naranjo E; Merfa MV; Santra S; Ozcan A; Johnson E; Cobine PA; De La Fuente L
    Appl Environ Microbiol; 2020 Aug; 86(16):. PubMed ID: 32561578
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Zhang Y; Li Z; Li J; Zhang W; Tian H; Zhang Z
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5984-5988. PubMed ID: 30961770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer.
    Baek SH; Noh BY; Park IK; Kim JH
    Nanoscale Res Lett; 2012 Jan; 7(1):29. PubMed ID: 22222067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bactericidal properties of ZnO-Al(2)O (3) composites formed from layered double hydroxide precursors.
    Lin YJ; Xu XY; Huang L; Evans DG; Li DQ
    J Mater Sci Mater Med; 2009 Feb; 20(2):591-5. PubMed ID: 18853242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-angle ZnO microstructures grown on Ag nanorods array for plasmon-enhanced near-UV-blue light emitter.
    Pal AK; Mohan DB
    Nanotechnology; 2017 Oct; 28(41):415707. PubMed ID: 28704205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite.
    Sharma RK; Agarwal M; Balani K
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():843-51. PubMed ID: 26952491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of seed layers on structural, morphological, and optical properties of ZnO nanorods.
    Lee GJ; Min SK; Oh CH; Leel Y; Lim H; Cheong H; Nam HJ; Hwangbo CK; Min SK; Han SH
    J Nanosci Nanotechnol; 2011 Jan; 11(1):511-7. PubMed ID: 21446487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.