These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34939028)

  • 1. BERT-Based Natural Language Processing of Drug Labeling Documents: A Case Study for Classifying Drug-Induced Liver Injury Risk.
    Wu Y; Liu Z; Wu L; Chen M; Tong W
    Front Artif Intell; 2021; 4():729834. PubMed ID: 34939028
    [No Abstract]   [Full Text] [Related]  

  • 2. Fine-tuning BERT for automatic ADME semantic labeling in FDA drug labeling to enhance product-specific guidance assessment.
    Shi Y; Wang J; Ren P; ValizadehAslani T; Zhang Y; Hu M; Liang H
    J Biomed Inform; 2023 Feb; 138():104285. PubMed ID: 36632860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DILI
    Rathee S; MacMahon M; Liu A; Katritsis NM; Youssef G; Hwang W; Wollman L; Han N
    Front Genet; 2022; 13():867946. PubMed ID: 35846129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. When BERT meets Bilbo: a learning curve analysis of pretrained language model on disease classification.
    Li X; Yuan W; Peng D; Mei Q; Wang Y
    BMC Med Inform Decis Mak; 2022 Apr; 21(Suppl 9):377. PubMed ID: 35382811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Information Extraction From FDA Drug Labeling to Enhance Product-Specific Guidance Assessment Using Natural Language Processing.
    Shi Y; Ren P; Zhang Y; Gong X; Hu M; Liang H
    Front Res Metr Anal; 2021; 6():670006. PubMed ID: 34179681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Natural Language Processing (NLP) systems to annotate drug product labeling with MedDRA terminology.
    Ly T; Pamer C; Dang O; Brajovic S; Haider S; Botsis T; Milward D; Winter A; Lu S; Ball R
    J Biomed Inform; 2018 Jul; 83():73-86. PubMed ID: 29860093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mining FDA drug labels using an unsupervised learning technique--topic modeling.
    Bisgin H; Liu Z; Fang H; Xu X; Tong W
    BMC Bioinformatics; 2011 Oct; 12 Suppl 10(Suppl 10):S11. PubMed ID: 22166012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DICE: A Drug Indication Classification and Encyclopedia for AI-Based Indication Extraction.
    Bhatt A; Roberts R; Chen X; Li T; Connor S; Hatim Q; Mikailov M; Tong W; Liu Z
    Front Artif Intell; 2021; 4():711467. PubMed ID: 34409286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approval of Cancer Drugs With Uncertain Therapeutic Value: A Comparison of Regulatory Decisions in Europe and the United States.
    Salcher-Konrad M; Naci H; Davis C
    Milbank Q; 2020 Dec; 98(4):1219-1256. PubMed ID: 33021339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
    Lee J; Yoon W; Kim S; Kim D; Kim S; So CH; Kang J
    Bioinformatics; 2020 Feb; 36(4):1234-1240. PubMed ID: 31501885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Fine-Tuned Bidirectional Encoder Representations From Transformers Model for Food Named-Entity Recognition: Algorithm Development and Validation.
    Stojanov R; Popovski G; Cenikj G; Koroušić Seljak B; Eftimov T
    J Med Internet Res; 2021 Aug; 23(8):e28229. PubMed ID: 34383671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Battery of
    Rathman J; Yang C; Ribeiro JV; Mostrag A; Thakkar S; Tong W; Hobocienski B; Sacher O; Magdziarz T; Bienfait B
    Chem Res Toxicol; 2021 Feb; 34(2):601-615. PubMed ID: 33356149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Korean clinical entity recognition from diagnosis text using BERT.
    Kim YM; Lee TH
    BMC Med Inform Decis Mak; 2020 Sep; 20(Suppl 7):242. PubMed ID: 32998724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Decision Forest Models for Prediction of Drug-Induced Liver Injury in Humans Using A Large Set of FDA-approved Drugs.
    Hong H; Thakkar S; Chen M; Tong W
    Sci Rep; 2017 Dec; 7(1):17311. PubMed ID: 29229971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepCausality: A general AI-powered causal inference framework for free text: A case study of LiverTox.
    Wang X; Xu X; Tong W; Liu Q; Liu Z
    Front Artif Intell; 2022; 5():999289. PubMed ID: 36561659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Validation of a Natural Language Processing Tool to Identify Patients Treated for Pneumonia across VA Emergency Departments.
    Jones BE; South BR; Shao Y; Lu CC; Leng J; Sauer BC; Gundlapalli AV; Samore MH; Zeng Q
    Appl Clin Inform; 2018 Jan; 9(1):122-128. PubMed ID: 29466818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. dialogi: Utilising NLP With Chemical and Disease Similarities to Drive the Identification of Drug-Induced Liver Injury Literature.
    Katritsis NM; Liu A; Youssef G; Rathee S; MacMahon M; Hwang W; Wollman L; Han N
    Front Genet; 2022; 13():894209. PubMed ID: 36017500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine-Tuning Bidirectional Encoder Representations From Transformers (BERT)-Based Models on Large-Scale Electronic Health Record Notes: An Empirical Study.
    Li F; Jin Y; Liu W; Rawat BPS; Cai P; Yu H
    JMIR Med Inform; 2019 Sep; 7(3):e14830. PubMed ID: 31516126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review of Patient-Reported Outcomes Labeling for Oncology Drugs Approved by the FDA and the EMA (2012-2016).
    Gnanasakthy A; Barrett A; Evans E; D'Alessio D; Romano CD
    Value Health; 2019 Feb; 22(2):203-209. PubMed ID: 30711065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.