BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34939044)

  • 21. Imaging pHluorin-tagged receptor insertion to the plasma membrane in primary cultured mouse neurons.
    Li Y; Roy BD; Wang W; Zhang L; Sampson SB; Lin DT
    J Vis Exp; 2012 Nov; (69):. PubMed ID: 23208071
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combining Membrane Potential Imaging with Other Optical Techniques.
    Jaafari N; Vogt KE; Saggau P; Leslie LM; Zecevic D; Canepari M
    Adv Exp Med Biol; 2015; 859():103-25. PubMed ID: 26238050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor.
    Bayguinov PO; Ma Y; Gao Y; Zhao X; Jackson MB
    J Neurosci; 2017 Sep; 37(38):9305-9319. PubMed ID: 28842412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shift and Mean Algorithm for Functional Imaging with High Spatio-Temporal Resolution.
    Rama S
    Front Cell Neurosci; 2015; 9():446. PubMed ID: 26635526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Red-shifted voltage-sensitive fluorescent proteins.
    Perron A; Mutoh H; Launey T; Knöpfel T
    Chem Biol; 2009 Dec; 16(12):1268-77. PubMed ID: 20064437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A hybrid approach to measuring electrical activity in genetically specified neurons.
    Chanda B; Blunck R; Faria LC; Schweizer FE; Mody I; Bezanilla F
    Nat Neurosci; 2005 Nov; 8(11):1619-26. PubMed ID: 16205716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maximizing the quantitative accuracy and reproducibility of Förster resonance energy transfer measurement for screening by high throughput widefield microscopy.
    Schaufele F
    Methods; 2014 Mar; 66(2):188-99. PubMed ID: 23927839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescent protein applications in plants.
    Berg RH; Beachy RN
    Methods Cell Biol; 2008; 85():153-77. PubMed ID: 18155463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biolistic delivery of voltage-sensitive dyes for fast recording of membrane potential changes in individual neurons in rat brain slices.
    Aseyev N; Roshchin M; Ierusalimsky VN; Balaban PM; Nikitin ES
    J Neurosci Methods; 2013 Jan; 212(1):17-27. PubMed ID: 22983172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tracking single-particle dynamics via combined optical and electrical sensing.
    Yukimoto N; Tsutsui M; He Y; Shintaku H; Tanaka S; Kawano S; Kawai T; Taniguchi M
    Sci Rep; 2013; 3():1855. PubMed ID: 23685401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectrally-resolved response properties of the three most advanced FRET based fluorescent protein voltage probes.
    Mutoh H; Perron A; Dimitrov D; Iwamoto Y; Akemann W; Chudakov DM; Knöpfel T
    PLoS One; 2009; 4(2):e4555. PubMed ID: 19234605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Progress of Hybrid Optical Probes for Neural Membrane Potential Imaging.
    Liu Y; Lu Y; Chen G; Wang Q
    Biotechnol J; 2020 Dec; 15(12):e2000086. PubMed ID: 32662937
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Voltage-dependent dynamic FRET signals from the transverse tubules in mammalian skeletal muscle fibers.
    DiFranco M; Capote J; Quiñonez M; Vergara JL
    J Gen Physiol; 2007 Dec; 130(6):581-600. PubMed ID: 18040060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new algorithm for voltage clamp by iteration: a learning control of a nonlinear neuronal system.
    Kawato M; Etoh M; Oda Y; Tsukahara N
    Biol Cybern; 1985; 53(1):57-66. PubMed ID: 4074770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-vivo Optical Measurement of Neural Activity in the Brain.
    Kim SA; Jun SB
    Exp Neurobiol; 2013 Sep; 22(3):158-66. PubMed ID: 24167411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of voltage-sensitive dyes and optical recordings in the central nervous system.
    Ebner TJ; Chen G
    Prog Neurobiol; 1995 Aug; 46(5):463-506. PubMed ID: 8532849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins.
    Akemann W; Mutoh H; Perron A; Rossier J; Knöpfel T
    Nat Methods; 2010 Aug; 7(8):643-9. PubMed ID: 20622860
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.