BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34939307)

  • 1. Atomistic Simulations of Dopamine Diffusion Dynamics on a Pristine Graphene Surface.
    Jia Q; Yang C; Venton BJ; DuBay KH
    Chemphyschem; 2022 Feb; 23(4):e202100783. PubMed ID: 34939307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and Dynamics of Adsorbed Dopamine on Solvated Carbon Nanotubes and in a CNT Groove.
    Jia Q; Venton BJ; DuBay KH
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine.
    Patel AN; Tan SY; Miller TS; Macpherson JV; Unwin PR
    Anal Chem; 2013 Dec; 85(24):11755-64. PubMed ID: 24308368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glassy carbon microelectrode arrays enable voltage-peak separated simultaneous detection of dopamine and serotonin using fast scan cyclic voltammetry.
    Castagnola E; Thongpang S; Hirabayashi M; Nava G; Nimbalkar S; Nguyen T; Lara S; Oyawale A; Bunnell J; Moritz C; Kassegne S
    Analyst; 2021 Jun; 146(12):3955-3970. PubMed ID: 33988202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of Neurotransmitters by Three-Dimensional Laser-Scribed Graphene Grass Electrodes.
    Xu G; Jarjes ZA; Wang HW; Phillips ARJ; Kilmartin PA; Travas-Sejdic J
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42136-42145. PubMed ID: 30444110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doping as a means to probe the potential dependence of dopamine adsorption on carbon-based surfaces: A first-principles study.
    Aarva A; Laurila T; Caro MA
    J Chem Phys; 2017 Jun; 146(23):234704. PubMed ID: 28641436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D fuzzy graphene microelectrode array for dopamine sensing at sub-cellular spatial resolution.
    Castagnola E; Garg R; Rastogi SK; Cohen-Karni T; Cui XT
    Biosens Bioelectron; 2021 Nov; 191():113440. PubMed ID: 34171734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Fouling of Ultrananocrystalline Diamond Microelectrodes during Dopamine Detection: Improving Lifetime via Electrochemical Cycling.
    Chang AY; Dutta G; Siddiqui S; Arumugam PU
    ACS Chem Neurosci; 2019 Jan; 10(1):313-322. PubMed ID: 30285418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene oxide fiber microelectrodes with controlled sheet alignment for sensitive neurotransmitter detection.
    Jarosova R; Ostertag BJ; Ross AE
    Nanoscale; 2023 Sep; 15(37):15249-15258. PubMed ID: 37672207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive electrochemical detection of dopamine with a DNA/graphene bi-layer modified carbon ionic liquid electrode.
    Wang X; You Z; Sha H; Cheng Y; Zhu H; Sun W
    Talanta; 2014 Oct; 128():373-8. PubMed ID: 25059174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile Post-deposition Annealing of Graphene Ink Enables Ultrasensitive Electrochemical Detection of Dopamine.
    Butler D; Moore D; Glavin NR; Robinson JA; Ebrahimi A
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11185-11194. PubMed ID: 33645208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional graphene-like carbon frameworks as a new electrode material for electrochemical determination of small biomolecules.
    Deng W; Yuan X; Tan Y; Ma M; Xie Q
    Biosens Bioelectron; 2016 Nov; 85():618-624. PubMed ID: 27240008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cavity Carbon-Nanopipette Electrodes for Dopamine Detection.
    Yang C; Hu K; Wang D; Zubi Y; Lee ST; Puthongkham P; Mirkin MV; Venton BJ
    Anal Chem; 2019 Apr; 91(7):4618-4624. PubMed ID: 30810304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrodeposited poly(3,4-ethylenedioxythiophene) doped with graphene oxide for the simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid.
    Li D; Liu M; Zhan Y; Su Q; Zhang Y; Zhang D
    Mikrochim Acta; 2020 Jan; 187(1):94. PubMed ID: 31902014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-Printed Carbon Electrodes for Neurotransmitter Detection.
    Yang C; Cao Q; Puthongkham P; Lee ST; Ganesana M; Lavrik NV; Venton BJ
    Angew Chem Int Ed Engl; 2018 Oct; 57(43):14255-14259. PubMed ID: 30207021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A test potential booster for fast-scan cyclic voltammetry with an electrophysiological amplifier.
    Nagai H; Yokoi T; Kano M; Tabata T
    Anal Biochem; 2020 Dec; 610():113934. PubMed ID: 32891595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanocages decorated biocompatible amine functionalized graphene as an efficient dopamine sensor platform.
    Daemi S; Ashkarran AA; Bahari A; Ghasemi S
    J Colloid Interface Sci; 2017 May; 494():290-299. PubMed ID: 28161500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene and Carbon Nanotube-based Electrochemical Sensing Platforms for Dopamine.
    Islam S; Shaheen Shah S; Naher S; Ali Ehsan M; Aziz MA; Ahammad AJS
    Chem Asian J; 2021 Nov; 16(22):3516-3543. PubMed ID: 34487610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Static and Dynamic Measurement of Dopamine Adsorption in Carbon Fiber Microelectrodes Using Electrochemical Impedance Spectroscopy.
    Rivera-Serrano N; Pagan M; Colón-Rodríguez J; Fuster C; Vélez R; Almodovar-Faria J; Jiménez-Rivera C; Cunci L
    Anal Chem; 2018 Feb; 90(3):2293-2301. PubMed ID: 29260558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.