These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34939786)

  • 1. Influence of Template Size, Canonicalization, and Exclusivity for Retrosynthesis and Reaction Prediction Applications.
    Heid E; Liu J; Aude A; Green WH
    J Chem Inf Model; 2022 Jan; 62(1):16-26. PubMed ID: 34939786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data Augmentation and Pretraining for Template-Based Retrosynthetic Prediction in Computer-Aided Synthesis Planning.
    Fortunato ME; Coley CW; Barnes BC; Jensen KF
    J Chem Inf Model; 2020 Jul; 60(7):3398-3407. PubMed ID: 32568548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AutoTemplate: enhancing chemical reaction datasets for machine learning applications in organic chemistry.
    Chen LY; Li YP
    J Cheminform; 2024 Jun; 16(1):74. PubMed ID: 38937840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RetroComposer: Composing Templates for Template-Based Retrosynthesis Prediction.
    Yan C; Zhao P; Lu C; Yu Y; Huang J
    Biomolecules; 2022 Sep; 12(9):. PubMed ID: 36139164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic retrosynthetic route planning using template-free models.
    Lin K; Xu Y; Pei J; Lai L
    Chem Sci; 2020 Mar; 11(12):3355-3364. PubMed ID: 34122843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer Learning: Making Retrosynthetic Predictions Based on a Small Chemical Reaction Dataset Scale to a New Level.
    Bai R; Zhang C; Wang L; Yao C; Ge J; Duan H
    Molecules; 2020 May; 25(10):. PubMed ID: 32438572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the performance of models for one-step retrosynthesis through re-ranking.
    Lin MH; Tu Z; Coley CW
    J Cheminform; 2022 Mar; 14(1):15. PubMed ID: 35292121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergy Between Expert and Machine-Learning Approaches Allows for Improved Retrosynthetic Planning.
    Badowski T; Gajewska EP; Molga K; Grzybowski BA
    Angew Chem Int Ed Engl; 2020 Jan; 59(2):725-730. PubMed ID: 31750610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction Templates: Bridging Synthesis Knowledge and Artificial Intelligence.
    Chen S; Noh J; Jang J; Kim S; Gu GH; Jung Y
    Acc Chem Res; 2024 Jul; 57(14):1964-1972. PubMed ID: 38924502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pilot study of a heuristic algorithm for novel template identification from VA electronic medical record text.
    Redd AM; Gundlapalli AV; Divita G; Carter ME; Tran LT; Samore MH
    J Biomed Inform; 2017 Jul; 71S():S68-S76. PubMed ID: 27497780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RetroRanker: leveraging reaction changes to improve retrosynthesis prediction through re-ranking.
    Li J; Fang L; Lou JG
    J Cheminform; 2023 Jun; 15(1):58. PubMed ID: 37291642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do Chemformers Dream of Organic Matter? Evaluating a Transformer Model for Multistep Retrosynthesis.
    Westerlund AM; Manohar Koki S; Kancharla S; Tibo A; Saigiridharan L; Kabeshov M; Mercado R; Genheden S
    J Chem Inf Model; 2024 Apr; 64(8):3021-3033. PubMed ID: 38602390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finding Relevant Retrosynthetic Disconnections for Stereocontrolled Reactions.
    Wiest O; Bauer C; Helquist P; Norrby PO; Genheden S
    J Chem Inf Model; 2024 Aug; 64(15):5796-5805. PubMed ID: 38995078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SynRoute: A Retrosynthetic Planning Software.
    Latendresse M; Malerich JP; Herson J; Krummenacker M; Szeto J; Vu VA; Collins N; Madrid PB
    J Chem Inf Model; 2023 Sep; 63(17):5484-5495. PubMed ID: 37635298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated reaction database and reaction network analysis: extraction of reaction templates using cheminformatics.
    Plehiers PP; Marin GB; Stevens CV; Van Geem KM
    J Cheminform; 2018 Mar; 10(1):11. PubMed ID: 29524042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing.
    Zhong W; Yang Z; Chen CY
    Nat Commun; 2023 May; 14(1):3009. PubMed ID: 37230985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning in Computer-Aided Synthesis Planning.
    Coley CW; Green WH; Jensen KF
    Acc Chem Res; 2018 May; 51(5):1281-1289. PubMed ID: 29715002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific template generative approach for retrosynthetic planning.
    Shee Y; Li H; Zhang P; Nikolic AM; Lu W; Kelly HR; Manee V; Sreekumar S; Buono FG; Song JJ; Newhouse TR; Batista VS
    Nat Commun; 2024 Sep; 15(1):7818. PubMed ID: 39251606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenging Complexity with Simplicity: Rethinking the Role of Single-Step Models in Computer-Aided Synthesis Planning.
    Li J; Lin K; Pei J; Lai L
    J Chem Inf Model; 2024 Jul; 64(14):5470-5479. PubMed ID: 38940765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Few- and Zero-Shot Reaction Template Prediction Using Modern Hopfield Networks.
    Seidl P; Renz P; Dyubankova N; Neves P; Verhoeven J; Wegner JK; Segler M; Hochreiter S; Klambauer G
    J Chem Inf Model; 2022 May; 62(9):2111-2120. PubMed ID: 35034452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.