These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 34939790)

  • 21. Adaptive Sampling Methods for Molecular Dynamics in the Era of Machine Learning.
    Kleiman DE; Nadeem H; Shukla D
    J Phys Chem B; 2023 Dec; 127(50):10669-10681. PubMed ID: 38081185
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced Sampling of Biomolecular Slow Conformational Transitions Using Adaptive Sampling and Machine Learning.
    Zhang M; Wu H; Wang Y
    J Chem Theory Comput; 2024 Oct; 20(19):8569-8582. PubMed ID: 39301626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advances in enhanced sampling along adaptive paths of collective variables.
    Pérez de Alba Ortíz A; Tiwari A; Puthenkalathil RC; Ensing B
    J Chem Phys; 2018 Aug; 149(7):072320. PubMed ID: 30134692
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectral gap optimization of order parameters for sampling complex molecular systems.
    Tiwary P; Berne BJ
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2839-44. PubMed ID: 26929365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning approaches for analyzing and enhancing molecular dynamics simulations.
    Wang Y; Lamim Ribeiro JM; Tiwary P
    Curr Opin Struct Biol; 2020 Apr; 61():139-145. PubMed ID: 31972477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational methods for exploring protein conformations.
    Allison JR
    Biochem Soc Trans; 2020 Aug; 48(4):1707-1724. PubMed ID: 32756904
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One Descriptor to Fold Them All: Harnessing Intuition and Machine Learning to Identify Transferable Lasso Peptide Reaction Coordinates.
    da Hora GCA; Oh M; Nguyen JDM; Swanson JMJ
    J Phys Chem B; 2024 May; 128(17):4063-4075. PubMed ID: 38568862
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonlinear discovery of slow molecular modes using state-free reversible VAMPnets.
    Chen W; Sidky H; Ferguson AL
    J Chem Phys; 2019 Jun; 150(21):214114. PubMed ID: 31176319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effective data-driven collective variables for free energy calculations from metadynamics of paths.
    Müllender L; Rizzi A; Parrinello M; Carloni P; Mandelli D
    PNAS Nexus; 2024 Apr; 3(4):pgae159. PubMed ID: 38665160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An exploration of machine learning models for the determination of reaction coordinates associated with conformational transitions.
    Naleem N; Abreu CRA; Warmuz K; Tong M; Kirmizialtin S; Tuckerman ME
    J Chem Phys; 2023 Jul; 159(3):. PubMed ID: 37458344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Collective variable discovery and enhanced sampling using autoencoders: Innovations in network architecture and error function design.
    Chen W; Tan AR; Ferguson AL
    J Chem Phys; 2018 Aug; 149(7):072312. PubMed ID: 30134681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active Learning of the Conformational Ensemble of Proteins Using Maximum Entropy VAMPNets.
    Kleiman DE; Shukla D
    J Chem Theory Comput; 2023 Jul; 19(14):4377-4388. PubMed ID: 37027313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving the accuracy and convergence of drug permeation simulations via machine-learned collective variables.
    Aydin F; Durumeric AEP; da Hora GCA; Nguyen JDM; Oh MI; Swanson JMJ
    J Chem Phys; 2021 Jul; 155(4):045101. PubMed ID: 34340389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dimensionality of Collective Variables for Describing Conformational Changes of a Multi-Domain Protein.
    Matsunaga Y; Komuro Y; Kobayashi C; Jung J; Mori T; Sugita Y
    J Phys Chem Lett; 2016 Apr; 7(8):1446-51. PubMed ID: 27049936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling and enhanced sampling of molecular systems with smooth and nonlinear data-driven collective variables.
    Hashemian B; Millán D; Arroyo M
    J Chem Phys; 2013 Dec; 139(21):214101. PubMed ID: 24320358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of Machine Learning Algorithms to Metadynamics for the Elucidation of the Binding Modes and Free Energy Landscape of Drug/Target Interactions: a Case Study.
    Siddiqui GA; Stebani JA; Wragg D; Koutsourelakis PS; Casini A; Gagliardi A
    Chemistry; 2023 Nov; 29(62):e202302375. PubMed ID: 37555841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing sampling with free-energy calculations.
    Chen H; Chipot C
    Curr Opin Struct Biol; 2022 Dec; 77():102497. PubMed ID: 36410221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine Learning Derived Collective Variables for the Study of Protein Homodimerization in Membrane.
    Majumder A; Straub JE
    J Chem Theory Comput; 2024 Jul; 20(13):5774-5783. PubMed ID: 38918177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine learning builds full-QM precision protein force fields in seconds.
    Han Y; Wang Z; Wei Z; Liu J; Li J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34017993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.