BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34940262)

  • 1. FRET Ratiometric Nanoprobes for Nanoparticle Monitoring.
    Yang G; Liu Y; Teng J; Zhao CX
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upconversion nanoparticle-mOrange protein FRET nanoprobes for self-ratiometric/ratiometric determination of intracellular pH, and single cell pH imaging.
    Ghosh S; Chang YF; Yang DM; Chattopadhyay S
    Biosens Bioelectron; 2020 May; 155():112115. PubMed ID: 32217331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and In Vivo biofate of nanomedicines.
    Chen T; He B; Tao J; He Y; Deng H; Wang X; Zheng Y
    Adv Drug Deliv Rev; 2019 Mar; 143():177-205. PubMed ID: 31201837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nanoparticle-supported fluorescence resonance energy transfer system formed via layer-by-layer approach as a ratiometric sensor for mercury ions in water.
    Ma C; Zeng F; Wu G; Wu S
    Anal Chim Acta; 2012 Jul; 734():69-78. PubMed ID: 22704474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.
    Yuan L; Lin W; Zheng K; Zhu S
    Acc Chem Res; 2013 Jul; 46(7):1462-73. PubMed ID: 23419062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-Functionalized Dye-Loaded Polymeric Nanoparticles: Ultrabright FRET Platform for Amplified Detection of Nucleic Acids.
    Melnychuk N; Klymchenko AS
    J Am Chem Soc; 2018 Aug; 140(34):10856-10865. PubMed ID: 30067022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. π-Conjugate Fluorophore-Tagged and Enzyme-Responsive l-Amino Acid Polymer Nanocarrier and Their Color-Tunable Intracellular FRET Probe in Cancer Cells.
    Saxena S; Jayakannan M
    Biomacromolecules; 2017 Aug; 18(8):2594-2609. PubMed ID: 28699735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale Live Imaging Using Förster Resonance Energy Transfer (FRET) for Evaluating the Biological Behavior of Nanoparticles as Drug Carriers.
    Ishizawa K; Togami K; Tada H; Chono S
    J Pharm Sci; 2020 Dec; 109(12):3608-3616. PubMed ID: 32926888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Self-Calibrating Nanoprobes with Two-Photon-Activated Fluorescence Resonance Energy Transfer for Ratiometric Imaging of Biological Selenocysteine.
    Zhang D; Hu M; Yuan X; Wu Y; Hu X; Xu S; Liu HW; Zhang X; Liu Y; Tan W
    ACS Appl Mater Interfaces; 2019 May; 11(19):17722-17729. PubMed ID: 30998313
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Dong Y; Du P; Liu P
    Int J Pharm; 2020 Oct; 588():119723. PubMed ID: 32755688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignosulfonate: A Convenient Fluorescence Resonance Energy Transfer Platform for the Construction of a Ratiometric Fluorescence pH-Sensing Probe.
    Xue Y; Wan Z; Ouyang X; Qiu X
    J Agric Food Chem; 2019 Jan; 67(4):1044-1051. PubMed ID: 30624925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conventional versus stealth lipid nanoparticles: formulation and in vivo fate prediction through FRET monitoring.
    Lainé AL; Gravier J; Henry M; Sancey L; Béjaud J; Pancani E; Wiber M; Texier I; Coll JL; Benoit JP; Passirani C
    J Control Release; 2014 Aug; 188():1-8. PubMed ID: 24878182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ratiometric fluorescent pH nanoprobes based on in situ assembling of fluorescence resonance energy transfer between fluorescent proteins.
    Yu H; Chen C; Cao X; Liu Y; Zhou S; Wang P
    Anal Bioanal Chem; 2017 Aug; 409(21):5073-5080. PubMed ID: 28687887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DOX Loaded Aggregation-induced Emission Active Polymeric Nanoparticles as a Fluorescence Resonance Energy Transfer Traceable Drug Delivery System for Self-indicating Cancer Therapy.
    Wang C; Wang Z; Zhao X; Yu F; Quan Y; Cheng Y; Yuan H
    Acta Biomater; 2019 Feb; 85():218-228. PubMed ID: 30557697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FRET as the tool for in vivo nanomedicine tracking.
    Kaeokhamloed N; Legeay S; Roger E
    J Control Release; 2022 Sep; 349():156-173. PubMed ID: 35779657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cascade FRET-mediated ratiometric sensor for Cu2+ ions based on dual fluorescent ligand-coated polymer nanoparticles.
    Frigoli M; Ouadahi K; Larpent C
    Chemistry; 2009 Aug; 15(33):8319-30. PubMed ID: 19575425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation-Enhanced Energy Transfer for Mitochondria-Targeted ATP Ratiometric Imaging in Living Cells.
    Li RS; Liu J; Yan Y; Su C; Lai T; Liao Y; Li YF; Li N; Huang CZ
    Anal Chem; 2021 Aug; 93(34):11878-11886. PubMed ID: 34403238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplexed Biosensing and Bioimaging Using Lanthanide-Based Time-Gated Förster Resonance Energy Transfer.
    Qiu X; Xu J; Cardoso Dos Santos M; Hildebrandt N
    Acc Chem Res; 2022 Feb; 55(4):551-564. PubMed ID: 35084817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of a Dual-Recognition Ratiometric Fluorescent Nanosensor with a Remarkably Large Stokes Shift for Accurate Tracking of Pathogenic Bacteria at the Single-Cell Level.
    Shen Y; Wu T; Zhang Y; Ling N; Zheng L; Zhang SL; Sun Y; Wang X; Ye Y
    Anal Chem; 2020 Oct; 92(19):13396-13404. PubMed ID: 32867467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wrapping nanocrystals with an amphiphilic polymer preloaded with fixed amounts of fluorophore generates FRET-based nanoprobes with a controlled donor/acceptor ratio.
    Yakovlev AV; Zhang F; Zulqurnain A; Azhar-Zahoor A; Luccardini C; Gaillard S; Mallet JM; Tauc P; Brochon JC; Parak WJ; Feltz A; Oheim M
    Langmuir; 2009 Mar; 25(5):3232-9. PubMed ID: 19437725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.