BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34940486)

  • 1. Impedance Spectroscopy Measurements of Ionomer Film Oxygen Transport Resistivity in Operating Low-Pt PEM Fuel Cell.
    Reshetenko TV; Kulikovsky A
    Membranes (Basel); 2021 Dec; 11(12):. PubMed ID: 34940486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nafion film transport properties in a low-Pt PEM fuel cell: impedance spectroscopy study.
    Reshetenko T; Kulikovsky A
    RSC Adv; 2019 Nov; 9(66):38797-38806. PubMed ID: 35540184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical Model for Concentration (Pressure) Impedance of a Low-Pt PEM Fuel Cell Oxygen Electrode.
    Kulikovsky A
    Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing oxygen transport in the ionomer film on platinum catalyst using ionic liquid additives.
    Fan L; Wang Y; Jiao K
    Fundam Res; 2022 Mar; 2(2):230-236. PubMed ID: 38933169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential-Dependent Ionomer Rearrangement on the Pt Surface in Polymer Electrolyte Membrane Fuel Cells.
    Lee DW; Hyun J; Oh E; Seok K; Bae H; Park J; Kim HT
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):4637-4647. PubMed ID: 38251952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dictating Pt-Based Electrocatalyst Performance in Polymer Electrolyte Fuel Cells, from Formulation to Application.
    Van Cleve T; Khandavalli S; Chowdhury A; Medina S; Pylypenko S; Wang M; More KL; Kariuki N; Myers DJ; Weber AZ; Mauger SA; Ulsh M; Neyerlin KC
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46953-46964. PubMed ID: 31742376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the Effects of Carbon Corrosion on Oxygen Transport Resistance in Low Pt Loading Proton Exchange Membrane Fuel Cells.
    Li H; You J; Cheng X; Luo L; Yan X; Yin J; Shen S; Zhang J
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):540-554. PubMed ID: 38156977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-scale revealing how real catalyst layer interfaces dominate the local oxygen transport resistance in ultra-low platinum PEMFC.
    Chen Y; Lin H; Huo J; Fang L; Zhang W; Ma T; Cui Z; Liang Z; Du L
    J Colloid Interface Sci; 2024 Oct; 671():344-353. PubMed ID: 38815371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Numerical Assessment of Mitigation Strategies to Reduce Local Oxygen and Proton Transport Resistances in Polymer Electrolyte Fuel Cells.
    García-Salaberri PA
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen Transport Routes in Ionomer Film on Polyhedral Platinum Nanoparticles.
    Fan L; Wang Y; Jiao K
    ACS Nano; 2020 Dec; 14(12):17487-17495. PubMed ID: 33306905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulated ionomer distribution in the catalyst layer of polymer electrolyte membrane fuel cells for high temperature operation.
    Choo MJ; Oh KH; Kim HT; Park JK
    ChemSusChem; 2014 Aug; 7(8):2335-41. PubMed ID: 24777945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cathode Catalyst Layer Design in PEM Water Electrolysis toward Reduced Pt Loading and Hydrogen Crossover.
    Zhang Z; Baudy A; Testino A; Gubler L
    ACS Appl Mater Interfaces; 2024 Apr; 16(18):23265-77. PubMed ID: 38652166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pt utilization in proton exchange membrane fuel cells: structure impacting factors and mechanistic insights.
    Tang M; Zhang S; Chen S
    Chem Soc Rev; 2022 Feb; 51(4):1529-1546. PubMed ID: 35138316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells.
    Ott S; Orfanidi A; Schmies H; Anke B; Nong HN; Hübner J; Gernert U; Gliech M; Lerch M; Strasser P
    Nat Mater; 2020 Jan; 19(1):77-85. PubMed ID: 31570820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of electrode ionomer oxygen permeability and ionomer-phase oxygen transport resistance in polymer electrolyte fuel cells.
    Sambandam S; Parrondo J; Ramani V
    Phys Chem Chem Phys; 2013 Sep; 15(36):14994-5002. PubMed ID: 23912796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionomer structure and component transport in the cathode catalyst layer of PEM fuel cells: A molecular dynamics study.
    Huang Y; Theodorakis PE; Zeng Z; Wang T; Che Z
    J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38288759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and conductivity of ionomer in PEM fuel cell catalyst layers: a model-based analysis.
    Olbrich W; Kadyk T; Sauter U; Eikerling M; Gostick J
    Sci Rep; 2023 Aug; 13(1):14127. PubMed ID: 37644035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into Degradation of the Membrane-Electrode Assembly Performance in Low-Temperature PEMFC: the Catalyst, the Ionomer, or the Interface?
    Sharma R; Morgen P; Chiriaev S; Lund PB; Larsen MJ; Sieborg B; Grahl-Madsen L; Andersen SM
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36315079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Annealing Behaviour of Pt and PtNi Nanowires for Proton Exchange Membrane Fuel Cells.
    Mardle P; Du S
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30126232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation Investigation of Electrocatalyst in Proton Exchange Membrane Fuel Cell at a High Energy Efficiency.
    Song J; Ye Q; Wang K; Guo Z; Dou M
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34203159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.