These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34940509)

  • 1. Age and Not the Preferred Limb Influences the Kinematic Structure of Pointing Movements.
    Kornatz KW; Poston B; Stelmach GE
    J Funct Morphol Kinesiol; 2021 Dec; 6(4):. PubMed ID: 34940509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origins of submovements in movements of elderly adults.
    Fradet L; Lee G; Dounskaia N
    J Neuroeng Rehabil; 2008 Nov; 5():28. PubMed ID: 19014548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of biomechanical factors on substructure of pointing movements.
    Dounskaia N; Wisleder D; Johnson T
    Exp Brain Res; 2005 Aug; 164(4):505-16. PubMed ID: 15856206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The type 1 submovement conundrum: an investigation into the function of velocity zero-crossings within two-component aiming movements.
    Roberts JW; Burkitt JJ; Elliott D
    Exp Brain Res; 2024 Apr; 242(4):921-935. PubMed ID: 38329516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of different submovement types during pointing to a target.
    Wisleder D; Dounskaia N
    Exp Brain Res; 2007 Jan; 176(1):132-49. PubMed ID: 16826410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid aimed limb movements: age differences and practice effects in component submovements.
    Pratt J; Chasteen AL; Abrams RA
    Psychol Aging; 1994 Jun; 9(2):325-34. PubMed ID: 8054180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initial and corrective submovement encoding differences within primary motor cortex during precision reaching.
    Schwartze KC; Lee WH; Rouse AG
    bioRxiv; 2023 Jul; ():. PubMed ID: 37461665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Movement strategies in vertical aiming of older adults.
    Bennett SJ; Elliott D; Rodacki A
    Exp Brain Res; 2012 Feb; 216(3):445-55. PubMed ID: 22116400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid aimed limb movements: differential effects of practice on component submovements.
    Abrams RA; Pratt J
    J Mot Behav; 1993 Dec; 25(4):288-98. PubMed ID: 15064195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination of multi-joint arm movements in cerebellar ataxia: analysis of hand and angular kinematics.
    Topka H; Konczak J; Dichgans J
    Exp Brain Res; 1998 Apr; 119(4):483-92. PubMed ID: 9588783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of overlapping submovements in the control of rapid hand movements.
    Novak KE; Miller LE; Houk JC
    Exp Brain Res; 2002 Jun; 144(3):351-64. PubMed ID: 12021817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary and submovement control of aiming in C6 tetraplegics following posterior deltoid transfer.
    Robinson MA; Elliott D; Hayes SJ; Barton GJ; Bennett SJ
    J Neuroeng Rehabil; 2014 Jul; 11():112. PubMed ID: 25055852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practice and Component Submovements: The Roles of Programming and Feedback in Rapid Aimed Limb Movements.
    Pratt J; Abrams RA
    J Mot Behav; 1996 Jun; 28(2):149-156. PubMed ID: 12529216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origins of submovements during pointing movements.
    Fradet L; Lee G; Dounskaia N
    Acta Psychol (Amst); 2008 Sep; 129(1):91-100. PubMed ID: 18550020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in speed and accuracy during rapid targeted center of pressure movements near the posterior limit of the base of support.
    Hernandez ME; Ashton-Miller JA; Alexander NB
    Clin Biomech (Bristol, Avon); 2012 Nov; 27(9):910-6. PubMed ID: 22770467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying distinct neural features between the initial and corrective phases of precise reaching using AutoLFADS.
    Lee WH; Karpowicz BM; Pandarinath C; Rouse AG
    bioRxiv; 2024 Feb; ():. PubMed ID: 38352314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic properties of rapid hand movements in a knob turning task.
    Novak KE; Miller LE; Houk JC
    Exp Brain Res; 2000 Jun; 132(4):419-33. PubMed ID: 10912823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manual interception of moving targets. II. On-line control of overlapping submovements.
    Lee D; Port NL; Georgopoulos AP
    Exp Brain Res; 1997 Oct; 116(3):421-33. PubMed ID: 9372291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measures of Interjoint Coordination Post-stroke Across Different Upper Limb Movement Tasks.
    Schwarz A; Veerbeek JM; Held JPO; Buurke JH; Luft AR
    Front Bioeng Biotechnol; 2020; 8():620805. PubMed ID: 33585418
    [No Abstract]   [Full Text] [Related]  

  • 20. Target-dependent differences between free and constrained arm movements in chronic hemiparesis.
    Beer RF; Dewald JP; Dawson ML; Rymer WZ
    Exp Brain Res; 2004 Jun; 156(4):458-70. PubMed ID: 14968276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.