BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 34940707)

  • 1. Advanced Strategies for 3D Bioprinting of Tissue and Organ Analogs Using Alginate Hydrogel Bioinks.
    Gao Q; Kim BS; Gao G
    Mar Drugs; 2021 Dec; 19(12):. PubMed ID: 34940707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications.
    Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A thermogelling organic-inorganic hybrid hydrogel with excellent printability, shape fidelity and cytocompatibility for 3D bioprinting.
    Hu C; Ahmad T; Haider MS; Hahn L; Stahlhut P; Groll J; Luxenhofer R
    Biofabrication; 2022 Jan; 14(2):. PubMed ID: 34875631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Bioprinting of Complex, Cell-laden Alginate Constructs.
    Tabriz AG; Cornelissen DJ; Shu W
    Methods Mol Biol; 2021; 2147():143-148. PubMed ID: 32840817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silk Fibroin Enhances Cytocompatibilty and Dimensional Stability of Alginate Hydrogels for Light-Based Three-Dimensional Bioprinting.
    Kim E; Seok JM; Bae SB; Park SA; Park WH
    Biomacromolecules; 2021 May; 22(5):1921-1931. PubMed ID: 33840195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
    Daly AC; Critchley SE; Rencsok EM; Kelly DJ
    Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
    Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK
    Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications.
    Choe G; Oh S; Seok JM; Park SA; Lee JY
    Nanoscale; 2019 Dec; 11(48):23275-23285. PubMed ID: 31782460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs.
    Zhang X; Kim GJ; Kang MG; Lee JK; Seo JW; Do JT; Hong K; Cha JM; Shin SR; Bae H
    Mar Drugs; 2018 Dec; 16(12):. PubMed ID: 30518062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional bioprinting of mesenchymal stem cells using an osteoinductive bioink containing alginate and BMP-2-loaded PLGA nanoparticles for bone tissue engineering.
    Choe G; Lee M; Oh S; Seok JM; Kim J; Im S; Park SA; Lee JY
    Biomater Adv; 2022 May; 136():212789. PubMed ID: 35929321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and systematic characterization of GelMA/alginate/PEGDMA/xanthan gum hydrogel bioink system for extrusion bioprinting.
    Li J; Moeinzadeh S; Kim C; Pan CC; Weale G; Kim S; Abrams G; James AW; Choo H; Chan C; Yang YP
    Biomaterials; 2023 Feb; 293():121969. PubMed ID: 36566553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications.
    Varaprasad K; Karthikeyan C; Yallapu MM; Sadiku R
    Int J Biol Macromol; 2022 Jul; 212():561-578. PubMed ID: 35643157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering alginate as bioink for bioprinting.
    Jia J; Richards DJ; Pollard S; Tan Y; Rodriguez J; Visconti RP; Trusk TC; Yost MJ; Yao H; Markwald RR; Mei Y
    Acta Biomater; 2014 Oct; 10(10):4323-31. PubMed ID: 24998183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visible light-crosslinkable tyramine-conjugated alginate-based microgel bioink for multiple cell-laden 3D artificial organ.
    Lee S; Choi G; Yang YJ; Joo KI; Cha HJ
    Carbohydr Polym; 2023 Aug; 313():120895. PubMed ID: 37182936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink.
    Somasekharan LT; Raju R; Kumar S; Geevarghese R; Nair RP; Kasoju N; Bhatt A
    Int J Biol Macromol; 2021 Oct; 189():398-409. PubMed ID: 34419550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dually crosslinked injectable alginate-based graft copolymer thermoresponsive hydrogels as 3D printing bioinks for cell spheroid growth and release.
    Saravanou SF; Ioannidis K; Dimopoulos A; Paxinou A; Kounelaki F; Varsami SM; Tsitsilianis C; Papantoniou I; Pasparakis G
    Carbohydr Polym; 2023 Jul; 312():120790. PubMed ID: 37059530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.
    Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P
    Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.