These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
427 related articles for article (PubMed ID: 34940707)
1. Advanced Strategies for 3D Bioprinting of Tissue and Organ Analogs Using Alginate Hydrogel Bioinks. Gao Q; Kim BS; Gao G Mar Drugs; 2021 Dec; 19(12):. PubMed ID: 34940707 [TBL] [Abstract][Full Text] [Related]
2. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
3. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications. Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259 [TBL] [Abstract][Full Text] [Related]
4. A thermogelling organic-inorganic hybrid hydrogel with excellent printability, shape fidelity and cytocompatibility for 3D bioprinting. Hu C; Ahmad T; Haider MS; Hahn L; Stahlhut P; Groll J; Luxenhofer R Biofabrication; 2022 Jan; 14(2):. PubMed ID: 34875631 [TBL] [Abstract][Full Text] [Related]
5. 3D Bioprinting of Complex, Cell-laden Alginate Constructs. Tabriz AG; Cornelissen DJ; Shu W Methods Mol Biol; 2021; 2147():143-148. PubMed ID: 32840817 [TBL] [Abstract][Full Text] [Related]
6. Silk Fibroin Enhances Cytocompatibilty and Dimensional Stability of Alginate Hydrogels for Light-Based Three-Dimensional Bioprinting. Kim E; Seok JM; Bae SB; Park SA; Park WH Biomacromolecules; 2021 May; 22(5):1921-1931. PubMed ID: 33840195 [TBL] [Abstract][Full Text] [Related]
7. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Daly AC; Critchley SE; Rencsok EM; Kelly DJ Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628 [TBL] [Abstract][Full Text] [Related]
8. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
9. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
10. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related]
11. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications. Choe G; Oh S; Seok JM; Park SA; Lee JY Nanoscale; 2019 Dec; 11(48):23275-23285. PubMed ID: 31782460 [TBL] [Abstract][Full Text] [Related]
12. Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs. Zhang X; Kim GJ; Kang MG; Lee JK; Seo JW; Do JT; Hong K; Cha JM; Shin SR; Bae H Mar Drugs; 2018 Dec; 16(12):. PubMed ID: 30518062 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional bioprinting of mesenchymal stem cells using an osteoinductive bioink containing alginate and BMP-2-loaded PLGA nanoparticles for bone tissue engineering. Choe G; Lee M; Oh S; Seok JM; Kim J; Im S; Park SA; Lee JY Biomater Adv; 2022 May; 136():212789. PubMed ID: 35929321 [TBL] [Abstract][Full Text] [Related]
14. Development and systematic characterization of GelMA/alginate/PEGDMA/xanthan gum hydrogel bioink system for extrusion bioprinting. Li J; Moeinzadeh S; Kim C; Pan CC; Weale G; Kim S; Abrams G; James AW; Choo H; Chan C; Yang YP Biomaterials; 2023 Feb; 293():121969. PubMed ID: 36566553 [TBL] [Abstract][Full Text] [Related]
15. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications. Varaprasad K; Karthikeyan C; Yallapu MM; Sadiku R Int J Biol Macromol; 2022 Jul; 212():561-578. PubMed ID: 35643157 [TBL] [Abstract][Full Text] [Related]
16. Engineering alginate as bioink for bioprinting. Jia J; Richards DJ; Pollard S; Tan Y; Rodriguez J; Visconti RP; Trusk TC; Yost MJ; Yao H; Markwald RR; Mei Y Acta Biomater; 2014 Oct; 10(10):4323-31. PubMed ID: 24998183 [TBL] [Abstract][Full Text] [Related]
17. Visible light-crosslinkable tyramine-conjugated alginate-based microgel bioink for multiple cell-laden 3D artificial organ. Lee S; Choi G; Yang YJ; Joo KI; Cha HJ Carbohydr Polym; 2023 Aug; 313():120895. PubMed ID: 37182936 [TBL] [Abstract][Full Text] [Related]
18. Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink. Somasekharan LT; Raju R; Kumar S; Geevarghese R; Nair RP; Kasoju N; Bhatt A Int J Biol Macromol; 2021 Oct; 189():398-409. PubMed ID: 34419550 [TBL] [Abstract][Full Text] [Related]
19. Dually crosslinked injectable alginate-based graft copolymer thermoresponsive hydrogels as 3D printing bioinks for cell spheroid growth and release. Saravanou SF; Ioannidis K; Dimopoulos A; Paxinou A; Kounelaki F; Varsami SM; Tsitsilianis C; Papantoniou I; Pasparakis G Carbohydr Polym; 2023 Jul; 312():120790. PubMed ID: 37059530 [TBL] [Abstract][Full Text] [Related]
20. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]