These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34940825)

  • 41. Fixational eye movements are not affected by abrupt onsets that capture attention.
    Tse PU; Sheinberg DL; Logothetis NK
    Vision Res; 2002 Jun; 42(13):1663-9. PubMed ID: 12079794
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Smooth Pursuit and Saccades after Sport-Related Concussion.
    Murray NG; Szekely B; Islas A; Munkasy B; Gore R; Berryhill M; Reed-Jones RJ
    J Neurotrauma; 2020 Jan; 37(2):340-346. PubMed ID: 31524054
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatial and Temporal Abnormalities of Spontaneous Fixational Saccades and Their Correlates With Positive and Cognitive Symptoms in Schizophrenia.
    Liu X; Li Y; Xu L; Zhang T; Cui H; Wei Y; Xia M; Su W; Tang Y; Tang X; Zhang D; Spillmann L; Max Andolina I; McLoughlin N; Wang W; Wang J
    Schizophr Bull; 2024 Jan; 50(1):78-88. PubMed ID: 37066730
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid number naming in chronic concussion: eye movements in the King-Devick test.
    Rizzo JR; Hudson TE; Dai W; Birkemeier J; Pasculli RM; Selesnick I; Balcer LJ; Galetta SL; Rucker JC
    Ann Clin Transl Neurol; 2016 Oct; 3(10):801-811. PubMed ID: 27752515
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Balance Markers and Saccadic Eye-Movement Measures in Adolescents With Postconcussion Syndrome.
    Rochefort C; Legace E; Boulay C; Macartney G; Goulet K; Zemek R; Sveistrup H
    J Athl Train; 2020 May; 55(5):475-481. PubMed ID: 32216658
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Active Vision: Dynamic Reformatting of Visual Information by the Saccade-Drift Cycle.
    Kagan I; Burr DC
    Curr Biol; 2017 May; 27(9):R341-R344. PubMed ID: 28486116
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fixational instability and saccadic eye movements of dyslexic children with subtle cerebellar dysfunction.
    Raymond JE; Ogden NA; Fagan JE; Kaplan BJ
    Am J Optom Physiol Opt; 1988 Mar; 65(3):174-81. PubMed ID: 3364526
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Suppressive interactions underlying visually evoked fixational saccades.
    Wang HX; Yuval-Greenberg S; Heeger DJ
    Vision Res; 2016 Jan; 118():70-82. PubMed ID: 25645962
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reduced amblyopic eye fixation stability cannot be simulated using retinal-defocus-induced reductions in visual acuity.
    Raveendran RN; Bobier W; Thompson B
    Vision Res; 2019 Jan; 154():14-20. PubMed ID: 30389388
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exploration of the functional consequences of fixational eye movements in the absence of a fovea.
    Agaoglu MN; Chung STL
    J Vis; 2020 Feb; 20(2):12. PubMed ID: 32106298
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The relation between visual acuity and the size of fixational eye movements in patients with diabetic and non-diabetic macular disease.
    Møller F; Bek T
    Acta Ophthalmol Scand; 1998 Feb; 76(1):38-42. PubMed ID: 9541432
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Individuals exhibit idiosyncratic eye-movement behavior profiles across tasks.
    Poynter W; Barber M; Inman J; Wiggins C
    Vision Res; 2013 Aug; 89():32-8. PubMed ID: 23867568
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effects of fixational tremor on the retinal image.
    Bowers NR; Boehm AE; Roorda A
    J Vis; 2019 Sep; 19(11):8. PubMed ID: 31532470
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative assessment of fixational eye movements by scanning laser ophthalmoscopy.
    Møller F; Sjølie AK; Bek T
    Acta Ophthalmol Scand; 1996 Dec; 74(6):578-83. PubMed ID: 9017046
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oculomotor Control in Amputee Soccer Players.
    Jedziniak W; Lesiakowski P; Zwierko T
    Adapt Phys Activ Q; 2020 Jan; 37(1):41-55. PubMed ID: 31837646
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neuronal control of fixation and fixational eye movements.
    Krauzlis RJ; Goffart L; Hafed ZM
    Philos Trans R Soc Lond B Biol Sci; 2017 Apr; 372(1718):. PubMed ID: 28242738
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Miniature eye movements enhance fine spatial detail.
    Rucci M; Iovin R; Poletti M; Santini F
    Nature; 2007 Jun; 447(7146):851-4. PubMed ID: 17568745
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transfer function of the rhesus macaque oculomotor system for small-amplitude slow motion trajectories.
    Skinner J; Buonocore A; Hafed ZM
    J Neurophysiol; 2019 Feb; 121(2):513-529. PubMed ID: 30540500
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of voluntary blinks on saccades, vergence eye movements, and saccade-vergence interactions in humans.
    Rambold H; Sprenger A; Helmchen C
    J Neurophysiol; 2002 Sep; 88(3):1220-33. PubMed ID: 12205143
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A computational observer model of spatial contrast sensitivity: Effects of photocurrent encoding, fixational eye movements, and inference engine.
    Cottaris NP; Wandell BA; Rieke F; Brainard DH
    J Vis; 2020 Jul; 20(7):17. PubMed ID: 32692826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.