BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 34940909)

  • 1. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi.
    Cavalier-Smith T
    Protoplasma; 2022 May; 259(3):487-593. PubMed ID: 34940909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.
    Cavalier-Smith T
    Int J Syst Evol Microbiol; 2002 Mar; 52(Pt 2):297-354. PubMed ID: 11931142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multigene phylogeny and cell evolution of chromist infrakingdom Rhizaria: contrasting cell organisation of sister phyla Cercozoa and Retaria.
    Cavalier-Smith T; Chao EE; Lewis R
    Protoplasma; 2018 Sep; 255(5):1517-1574. PubMed ID: 29666938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree.
    Cavalier-Smith T
    Biol Lett; 2010 Jun; 6(3):342-5. PubMed ID: 20031978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogeny of choanozoa, apusozoa, and other protozoa and early eukaryote megaevolution.
    Cavalier-Smith T; Chao EE
    J Mol Evol; 2003 May; 56(5):540-63. PubMed ID: 12698292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eukaryote kingdoms: seven or nine?
    Cavalier-Smith T
    Biosystems; 1981; 14(3-4):461-81. PubMed ID: 7337818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A revised six-kingdom system of life.
    Cavalier-Smith T
    Biol Rev Camb Philos Soc; 1998 Aug; 73(3):203-66. PubMed ID: 9809012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences.
    Cavalier-Smith T
    Protoplasma; 2018 Jan; 255(1):297-357. PubMed ID: 28875267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal conflicts in the phylogeny of the primary photosynthetic eukaryotes.
    Deschamps P; Moreira D
    Mol Biol Evol; 2009 Dec; 26(12):2745-53. PubMed ID: 19706725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa.
    Cavalier-Smith T; Chao EE; Snell EA; Berney C; Fiore-Donno AM; Lewis R
    Mol Phylogenet Evol; 2014 Dec; 81():71-85. PubMed ID: 25152275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).
    Cavalier-Smith T
    Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):109-33; discussion 133-4. PubMed ID: 12594921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa.
    Cavalier-Smith T
    Eur J Protistol; 2013 May; 49(2):115-78. PubMed ID: 23085100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular phylogeny of centrohelid heliozoa, a novel lineage of bikont eukaryotes that arose by ciliary loss.
    Cavalier-Smith T; Chao EE
    J Mol Evol; 2003 Apr; 56(4):387-96. PubMed ID: 12664159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.
    Nozaki H
    J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-photosynthetic predators are sister to red algae.
    Gawryluk RMR; Tikhonenkov DV; Hehenberger E; Husnik F; Mylnikov AP; Keeling PJ
    Nature; 2019 Aug; 572(7768):240-243. PubMed ID: 31316212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A molecular timescale of eukaryote evolution and the rise of complex multicellular life.
    Hedges SB; Blair JE; Venturi ML; Shoe JL
    BMC Evol Biol; 2004 Jan; 4():2. PubMed ID: 15005799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple origins of Heliozoa from flagellate ancestors: New cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista.
    Cavalier-Smith T; Chao EE; Lewis R
    Mol Phylogenet Evol; 2015 Dec; 93():331-62. PubMed ID: 26234272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution: King-Size Plastid Genomes in a New Red Algal Clade.
    Moreira D; López-García P
    Curr Biol; 2017 Jul; 27(13):R651-R653. PubMed ID: 28697364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements.
    Richards TA; Dacks JB; Campbell SA; Blanchard JL; Foster PG; McLeod R; Roberts CW
    Eukaryot Cell; 2006 Sep; 5(9):1517-31. PubMed ID: 16963634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree.
    Cavalier-Smith T
    J Eukaryot Microbiol; 1999; 46(4):347-66. PubMed ID: 18092388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.