These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 34940929)
1. Vector-Borne Disease Models with Active and Inactive Vectors: A Simple Way to Consider Biting Behavior. Simoy MI; Aparicio JP Bull Math Biol; 2021 Dec; 84(1):22. PubMed ID: 34940929 [TBL] [Abstract][Full Text] [Related]
2. Ross-Macdonald models: Which one should we use? Simoy MI; Aparicio JP Acta Trop; 2020 Jul; 207():105452. PubMed ID: 32302688 [TBL] [Abstract][Full Text] [Related]
3. A Population Dynamics Model of Mosquito-Borne Disease Transmission, Focusing on Mosquitoes' Biased Distribution and Mosquito Repellent Use. Aldila D; Seno H Bull Math Biol; 2019 Dec; 81(12):4977-5008. PubMed ID: 31595380 [TBL] [Abstract][Full Text] [Related]
4. Time-Scale Analysis and Parameter Fitting for Vector-Borne Diseases with Spatial Dynamics. Sartori L; Pereira M; Oliva S Bull Math Biol; 2022 Sep; 84(11):124. PubMed ID: 36121515 [TBL] [Abstract][Full Text] [Related]
5. Ross, macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. Smith DL; Battle KE; Hay SI; Barker CM; Scott TW; McKenzie FE PLoS Pathog; 2012; 8(4):e1002588. PubMed ID: 22496640 [TBL] [Abstract][Full Text] [Related]
6. Impact of venereal transmission on the dynamics of vertically transmitted viral diseases among mosquitoes. Nadim SS; Ghosh I; Martcheva M; Chattopadhyay J Math Biosci; 2020 Jul; 325():108366. PubMed ID: 32387647 [TBL] [Abstract][Full Text] [Related]
7. A hybrid Lagrangian-Eulerian model for vector-borne diseases. Gao D; Yuan X J Math Biol; 2024 Jun; 89(2):16. PubMed ID: 38890206 [TBL] [Abstract][Full Text] [Related]
8. On the role of vector modeling in a minimalistic epidemic model. Rashkov P; Venturino E; Aguiar M; Stollenwerk N; W Kooi B Math Biosci Eng; 2019 May; 16(5):4314-4338. PubMed ID: 31499664 [TBL] [Abstract][Full Text] [Related]
9. Vector dynamics influence spatially imperfect genetic interventions against disease. Yuksel MK; Remien CH; Karki B; Bull JJ; Krone SM Evol Med Public Health; 2021; 9(1):1-10. PubMed ID: 33664955 [TBL] [Abstract][Full Text] [Related]
10. À la carte: how mosquitoes choose their blood meals. Blanken SL; Prudhomme O'Meara W; Hol FJH; Bousema T; Markwalter CF Trends Parasitol; 2024 Jul; 40(7):591-603. PubMed ID: 38853076 [TBL] [Abstract][Full Text] [Related]
11. A field-based modeling study on ecological characterization of hourly host-seeking behavior and its associated climatic variables in Aedes albopictus. Yin Q; Li L; Guo X; Wu R; Shi B; Wang Y; Liu Y; Wu S; Pan Y; Wang Q; Xie T; Hu T; Xia D; Xia S; Kambalame DM; Li W; Song Z; Zhou S; Deng Y; Xie Y; Zhou XN; Wang C; Chen XG; Zhou X Parasit Vectors; 2019 Oct; 12(1):474. PubMed ID: 31610804 [TBL] [Abstract][Full Text] [Related]
12. An almost periodic Ross-Macdonald model with structured vector population in a patchy environment. Wang BG; Qiang L; Wang ZC J Math Biol; 2020 Feb; 80(3):835-863. PubMed ID: 31655877 [TBL] [Abstract][Full Text] [Related]
13. Transmission Dynamics and Control Mechanisms of Vector-Borne Diseases with Active and Passive Movements Between Urban and Satellite Cities. Harvim P; Zhang H; Georgescu P; Zhang L Bull Math Biol; 2019 Nov; 81(11):4518-4563. PubMed ID: 31641984 [TBL] [Abstract][Full Text] [Related]
14. Competent Hosts and Endemicity of Multi-Host Vector-Borne Diseases. Sanabria Malagón C; Vargas Bernal E Bull Math Biol; 2019 Nov; 81(11):4470-4483. PubMed ID: 30535844 [TBL] [Abstract][Full Text] [Related]
15. How public reaction to disease information across scales and the impacts of vector control methods influence disease prevalence and control efficacy. Jiao J; Suarez GP; Fefferman NH PLoS Comput Biol; 2021 Jun; 17(6):e1008762. PubMed ID: 34181645 [TBL] [Abstract][Full Text] [Related]
16. Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Smith DL; Perkins TA; Reiner RC; Barker CM; Niu T; Chaves LF; Ellis AM; George DB; Le Menach A; Pulliam JR; Bisanzio D; Buckee C; Chiyaka C; Cummings DA; Garcia AJ; Gatton ML; Gething PW; Hartley DM; Johnston G; Klein EY; Michael E; Lloyd AL; Pigott DM; Reisen WK; Ruktanonchai N; Singh BK; Stoller J; Tatem AJ; Kitron U; Godfray HC; Cohen JM; Hay SI; Scott TW Trans R Soc Trop Med Hyg; 2014 Apr; 108(4):185-97. PubMed ID: 24591453 [TBL] [Abstract][Full Text] [Related]
17. Understanding mosquito host-choice behaviour: a new and low-cost method of identifying the sex of human hosts from mosquito blood meals. Teltscher F; Bouvaine S; Gibson G; Dyer P; Guest J; Young S; Hopkins RJ Parasit Vectors; 2021 Jan; 14(1):75. PubMed ID: 33482889 [TBL] [Abstract][Full Text] [Related]
18. Modeling the Spread of Zika Virus in a Stage-Structured Population: Effect of Sexual Transmission. Sasmal SK; Ghosh I; Huppert A; Chattopadhyay J Bull Math Biol; 2018 Nov; 80(11):3038-3067. PubMed ID: 30229426 [TBL] [Abstract][Full Text] [Related]
19. A mathematical model for Zika virus transmission dynamics with a time-dependent mosquito biting rate. Suparit P; Wiratsudakul A; Modchang C Theor Biol Med Model; 2018 Aug; 15(1):11. PubMed ID: 30064447 [TBL] [Abstract][Full Text] [Related]
20. Magnitude and frequency variations of vector-borne infection outbreaks using the Ross-Macdonald model: explaining and predicting outbreaks of dengue fever. Amaku M; Azevedo F; Burattini MN; Coelho GE; Coutinho FAB; Greenhalgh D; Lopez LF; Motitsuki RS; Wilder-Smith A; Massad E Epidemiol Infect; 2016 Dec; 144(16):3435-3450. PubMed ID: 27538702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]