These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34940929)

  • 21. Modelling the Effect of a Novel Autodissemination Trap on the Spread of Dengue in Shah Alam and Malaysia.
    Liang Y; Ahmad Mohiddin MN; Bahauddin R; Hidayatul FO; Nazni WA; Lee HL; Greenhalgh D
    Comput Math Methods Med; 2019; 2019():1923479. PubMed ID: 31481976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010.
    Reiner RC; Perkins TA; Barker CM; Niu T; Chaves LF; Ellis AM; George DB; Le Menach A; Pulliam JR; Bisanzio D; Buckee C; Chiyaka C; Cummings DA; Garcia AJ; Gatton ML; Gething PW; Hartley DM; Johnston G; Klein EY; Michael E; Lindsay SW; Lloyd AL; Pigott DM; Reisen WK; Ruktanonchai N; Singh BK; Tatem AJ; Kitron U; Hay SI; Scott TW; Smith DL
    J R Soc Interface; 2013 Apr; 10(81):20120921. PubMed ID: 23407571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mathematical Analysis of the Ross-Macdonald Model with Quarantine.
    Jin X; Jin S; Gao D
    Bull Math Biol; 2020 Apr; 82(4):47. PubMed ID: 32242279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The relation between host competence and vector-feeding preference in a multi-host model: Chagas and Cutaneous Leishmaniasis.
    Rivera RC; Bilal S; Michael E
    Math Biosci Eng; 2020 Aug; 17(5):5561-5583. PubMed ID: 33120566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Practical unidentifiability of a simple vector-borne disease model: Implications for parameter estimation and intervention assessment.
    Kao YH; Eisenberg MC
    Epidemics; 2018 Dec; 25():89-100. PubMed ID: 29903539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Habitat fragmentation promotes malaria persistence.
    Gao D; van den Driessche P; Cosner C
    J Math Biol; 2019 Dec; 79(6-7):2255-2280. PubMed ID: 31520106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Threshold dynamics of an almost periodic vector-borne disease model.
    Zhang T; Zhao XQ
    J Math Biol; 2023 Oct; 87(5):72. PubMed ID: 37848568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and Practical Identifiability Analysis of Zika Epidemiological Models.
    Tuncer N; Marctheva M; LaBarre B; Payoute S
    Bull Math Biol; 2018 Aug; 80(8):2209-2241. PubMed ID: 29948883
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimal control for disease vector management in SIT models: an integrodifference equation approach.
    Kura K; Khamis D; El Mouden C; Bonsall MB
    J Math Biol; 2019 May; 78(6):1821-1839. PubMed ID: 30734075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Sterile Males and Fertility of Infected Mosquitoes on Mosquito-Borne Disease Dynamics.
    Sun X; Liu S; Lv Y; Pei Y
    Bull Math Biol; 2022 Jan; 84(2):31. PubMed ID: 35028762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vector Preference Annihilates Backward Bifurcation and Reduces Endemicity.
    Caja Rivera R; Barradas I
    Bull Math Biol; 2019 Nov; 81(11):4447-4469. PubMed ID: 30569327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Age- and bite-structured models for vector-borne diseases.
    Rock KS; Wood DA; Keeling MJ
    Epidemics; 2015 Sep; 12():20-9. PubMed ID: 26342239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biting patterns of malaria vectors of the lower Shire valley, southern Malawi.
    Mburu MM; Mzilahowa T; Amoah B; Chifundo D; Phiri KS; van den Berg H; Takken W; McCann RS
    Acta Trop; 2019 Sep; 197():105059. PubMed ID: 31194960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asymptotic analysis of a vector-borne disease model with the age of infection.
    Wang X; Chen Y; Martcheva M; Rong L
    J Biol Dyn; 2020 Dec; 14(1):332-367. PubMed ID: 32324106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How do biting disease vectors behaviourally respond to host availability?
    Yakob L
    Parasit Vectors; 2016 Aug; 9(1):468. PubMed ID: 27562086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From puddles to planet: modeling approaches to vector-borne diseases at varying resolution and scale.
    Eckhoff PA; Bever CA; Gerardin J; Wenger EA; Smith DL
    Curr Opin Insect Sci; 2015 Aug; 10():118-123. PubMed ID: 29587999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human-Mosquito Contact: A Missing Link in Our Understanding of Mosquito-Borne Disease Transmission Dynamics.
    Thongsripong P; Hyman JM; Kapan DD; Bennett SN
    Ann Entomol Soc Am; 2021 Jul; 114(4):397-414. PubMed ID: 34249219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Ross-Macdonald model in a patchy environment.
    Auger P; Kouokam E; Sallet G; Tchuente M; Tsanou B
    Math Biosci; 2008 Dec; 216(2):123-31. PubMed ID: 18805432
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of deltamethrin-resistance in Aedes albopictus on its fitness cost and vector competence.
    Deng J; Guo Y; Su X; Liu S; Yang W; Wu Y; Wu K; Yan G; Chen XG
    PLoS Negl Trop Dis; 2021 Apr; 15(4):e0009391. PubMed ID: 33905415
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parasite sources and sinks in a patched Ross-Macdonald malaria model with human and mosquito movement: Implications for control.
    Ruktanonchai NW; Smith DL; De Leenheer P
    Math Biosci; 2016 Sep; 279():90-101. PubMed ID: 27436636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.