These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34941262)

  • 1. Degradation of Perfluorooctanoic Acid with Hydrated Electron by a Heterogeneous Catalytic System.
    Liu G; Feng C; Shao P
    Environ Sci Technol; 2022 May; 56(10):6223-6231. PubMed ID: 34941262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reductive degradation mechanism of perfluorooctanoic acid (PFOA) during vacuum ultraviolet (VUV) reactions combining with sulfite and iodide.
    Park H; Kim T; Kim J; Kim MK; Eom S; Choi Y; Zoh KD
    Chemosphere; 2024 Jan; 348():140759. PubMed ID: 37992904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrate promoted defluorination of perfluorooctanoic acid in UV/sulfite system: Coupling hydrated electron/reactive nitrogen species-mediated reduction and oxidation.
    Yuan Y; Feng L; He X; Wu M; Ai Z; Zhang L; Gong J
    Environ Pollut; 2022 Nov; 313():120172. PubMed ID: 36115490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system.
    Song Z; Tang H; Wang N; Zhu L
    J Hazard Mater; 2013 Nov; 262():332-8. PubMed ID: 24056245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reductive degradation of perfluorooctanoic acid in complex water matrices by using the UV/sulfite process.
    Ren Z; Bergmann U; Leiviskä T
    Water Res; 2021 Oct; 205():117676. PubMed ID: 34600233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism and efficiency of contaminant reduction by hydrated electron in the sulfite/iodide/UV process.
    Yu K; Li X; Chen L; Fang J; Chen H; Li Q; Chi N; Ma J
    Water Res; 2018 Feb; 129():357-364. PubMed ID: 29169109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying Hydrated Electron Transformation Kinetics in UV-Advanced Reduction Processes Using the
    Fennell BD; Odorisio A; McKay G
    Environ Sci Technol; 2022 Jul; 56(14):10329-10338. PubMed ID: 35791772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Carbonate Speciation on Hydrated Electron Treatment Processes.
    Amador CK; Cavalli H; Tenorio R; Tetu H; Higgins CP; Vyas S; Strathmann TJ
    Environ Sci Technol; 2023 May; 57(20):7849-7857. PubMed ID: 37170785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UV/Nitrilotriacetic Acid Process as a Novel Strategy for Efficient Photoreductive Degradation of Perfluorooctanesulfonate.
    Sun Z; Zhang C; Xing L; Zhou Q; Dong W; Hoffmann MR
    Environ Sci Technol; 2018 Mar; 52(5):2953-2962. PubMed ID: 29397704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient reduction of bromate by vacuum UV/sulfite system.
    Zhang J; Li J; Tang W; Liu X; Yang C; Ma J
    Chemosphere; 2024 Feb; 349():140875. PubMed ID: 38065260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivity of Dissolved Organic Matter with the Hydrated Electron: Implications for Treatment of Chemical Contaminants in Water with Advanced Reduction Processes.
    Fennell BD; Fowler D; Mezyk SP; McKay G
    Environ Sci Technol; 2023 May; 57(19):7634-7643. PubMed ID: 37141499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promotive Effects of Chloride and Sulfate on the Near-Complete Destruction of Perfluorocarboxylates (PFCAs) in Brine via Hydrogen-tuned 185-nm UV Photolysis: Mechanisms and Kinetics.
    Liu S; Chen G; Shi Q; Gan J; Jin B; Men Y; Liu H
    Environ Sci Technol; 2024 Jun; 58(23):10347-10356. PubMed ID: 38808621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic Model for Predicting Perfluoroalkyl Acid Degradation During UV-Sulfite Treatment.
    Amador CK; Vyas S; Strathmann TJ
    Environ Sci Technol; 2024 Apr; 58(14):6425-6434. PubMed ID: 38554136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of humic acid on the photoreductive degradation of perfluorooctane sulfonate (PFOS) by UV/Iodide process.
    Sun Z; Zhang C; Chen P; Zhou Q; Hoffmann MR
    Water Res; 2017 Dec; 127():50-58. PubMed ID: 29031799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the hydrated electron generation from UV/aniline: Mechanism and quantum efficiency.
    Yu X; Tan L; Yu Y; Xia Y; Guan Z; Gu J; Wang J; Chen H; Jiang F
    Chemosphere; 2022 Jan; 287(Pt 3):132292. PubMed ID: 34562711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced coagulation coupled with cyclic IX adsorption-ARP regeneration for removal of PFOA in drinking water treatment.
    Cui J; Deng Y
    Water Environ Res; 2023 Oct; 95(10):e10928. PubMed ID: 37740247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prehydrated Electrons Activated by Continuous Electron Transfer Stemmed from Peracetic Acid Homolysis Mediated by Diamond Surface Defects for Enhanced PFOA Destruction.
    Xue Y; Sun W; Shi W; Huang CH; Santoro D
    Environ Sci Technol; 2024 Jun; 58(25):11152-11161. PubMed ID: 38867504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochar and surfactant synergistically enhanced PFAS destruction in UV/sulfite system at neutral pH.
    He J; Boersma M; Song Z; Krebsbach S; Fan D; Duin EC; Wang D
    Chemosphere; 2024 Apr; 353():141562. PubMed ID: 38417493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete mineralization of perfluorooctanoic acid (PFOA) by γ-irradiation in aqueous solution.
    Zhang Z; Chen JJ; Lyu XJ; Yin H; Sheng GP
    Sci Rep; 2014 Dec; 4():7418. PubMed ID: 25492109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discerning the inefficacy of hydroxyl radicals during perfluorooctanoic acid degradation.
    Javed H; Lyu C; Sun R; Zhang D; Alvarez PJJ
    Chemosphere; 2020 May; 247():125883. PubMed ID: 31978654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.