BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34941273)

  • 1. A Study on Dislocation Mechanisms of Toughening in Cu-Graphene Nanolayered Composite.
    Lee S; Ghaffarian H; Kim W; Lee T; Han SM; Ryu S; Oh SH
    Nano Lett; 2022 Jan; 22(1):188-195. PubMed ID: 34941273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites.
    Kim Y; Lee J; Yeom MS; Shin JW; Kim H; Cui Y; Kysar JW; Hone J; Jung Y; Jeon S; Han SM
    Nat Commun; 2013; 4():2114. PubMed ID: 23820590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Graphene in Reducing Fatigue Damage in Cu/Gr Nanolayered Composite.
    Hwang B; Kim W; Kim J; Lee S; Lim S; Kim S; Oh SH; Ryu S; Han SM
    Nano Lett; 2017 Aug; 17(8):4740-4745. PubMed ID: 28723157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomistic simulations of mechanical response of a heterogeneous fcc/bcc nanolayered composite.
    Xu K; Zhai H; He L; Ni Y; Lu P; Wang G; Liu X
    J Phys Condens Matter; 2022 Jul; 34(38):. PubMed ID: 35839749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusually high flexibility of graphene-Cu nanolayered composites under bending.
    Zhao Y; Liu X; Zhu J; Luo SN
    Phys Chem Chem Phys; 2019 Aug; 21(31):17393-17399. PubMed ID: 31359012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competing roles of interfaces and matrix grain size in the deformation and failure of polycrystalline Cu-graphene nanolayered composites under shear loading.
    Zhang S; Xu Y; Liu X; Luo SN
    Phys Chem Chem Phys; 2018 Sep; 20(36):23694-23701. PubMed ID: 30191248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Interfacial Structure on Mechanical Properties of Graphene Reinforced Al
    Wang X; Zhao J; Cui E; Tian X; Sun Z
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34067278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneously Enhancing the Strength, Plasticity, and Conductivity of Copper Matrix Composites with Graphene-Coated Submicron Spherical Copper.
    Yang Y; Liang Y; He G; Luo P
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanolayered CoCrFeNi/Graphene Composites with High Strength and Crack Resistance.
    Feng X; Cao K; Huang X; Li G; Lu Y
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness.
    Pavithra CL; Sarada BV; Rajulapati KV; Rao TN; Sundararajan G
    Sci Rep; 2014 Feb; 4():4049. PubMed ID: 24514043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strengthening mechanisms of graphene in copper matrix nanocomposites: A molecular dynamics study.
    Zhang Y; An Q; Li J; Lu B; Wu W; Xia R
    J Mol Model; 2020 Nov; 26(12):335. PubMed ID: 33156482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of temperature and grain size on deformation of polycrystalline copper-graphene nanolayered composites.
    Ma Y; Zhang S; Xu Y; Liu X; Luo SN
    Phys Chem Chem Phys; 2020 Feb; 22(8):4741-4748. PubMed ID: 32057046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals.
    Han X; Wang L; Yue Y; Zhang Z
    Ultramicroscopy; 2015 Apr; 151():94-100. PubMed ID: 25576291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression.
    Weng S; Ning H; Fu T; Hu N; Zhao Y; Huang C; Peng X
    Sci Rep; 2018 Feb; 8(1):3089. PubMed ID: 29449626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing the toughening mechanism of graphene-polymer nanocomposite through molecular dynamics simulation.
    Liu J; Shen J; Zheng Z; Wu Y; Zhang L
    Nanotechnology; 2015 Jul; 26(29):291003. PubMed ID: 26134132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects on the Microstructure Evolution and Properties of Graphene/Copper Composite during Rolling Process.
    Yang Z; Deng F; Tao Z; Yan S; Ma H; Qian M; He W; Zhang Z; Liu Y; Wang L
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Strength and Delamination of Graphene/Cu Composites with Different Cu Thicknesses.
    Kim SM; Park WR; Kwon OH
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on Nanoporous Graphene-Based Hybrid Architecture for Surface Bonding.
    Song X; Chen M; Zhang J; Zhang R; Zhang W
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency-tunable toughening in a polymer-metal-ceramic stack using an interfacial molecular nanolayer.
    Kwan M; Braccini M; Lane MW; Ramanath G
    Nat Commun; 2018 Dec; 9(1):5249. PubMed ID: 30531806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the Characteristic Size and Content of Graphene on the Crack Propagation Path of Alumina/Graphene Composite Ceramics.
    Chen B; Xiao G; Yi M; Zhang J; Zhou T; Chen Z; Zhang Y; Xu C
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33525747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.